
P
o
S
(
L
A
T
T
I
C
E

2
0
0
7
)
0
4
0

Development of QCD code on a CELL Machine

Shinji Motoki
Graduate School of Bio-Sphere Science, Hiroshima University, 1-7-1 Kagamiyama,
Higashi-Hiroshima 739-8521, Japan
E-mail: motoki-shinji@hiroshima-u.ac.jp

Atsushi Nakamura
Research Institute for Information Science and Education (RIISE), Hiroshima University, 1-7-1
Kagamiyama, Higashi-Hiroshima 739-8521, Japan
E-mail: nakamura@riise.hiroshima-u.ac.jp

We report our experience of developing a QCD code on a CELL BE machine. First we describe
what CELL BE is, and why it is worthwhile studying the possibility of simulating lattice QCD
on this new multicore processor. Then we discuss our code development process and the perfor-
mance of fermion matrix× vector calculations, which appear in a standard conjugate-gradient-
type solver. Our first result, 20 GFLOPS, is far from the theoretical peak speed of 400 GFLOPS.
We discuss the cause of this low value and a possible remedy.

The XXV International Symposium on Lattice Field Theory
July 30-4 August 2007
Regensburg, Germany

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:motoki-shinji@hiroshima-u.ac.jp
mailto:nakamura@riise.hiroshima-u.ac.jp

P
o
S
(
L
A
T
T
I
C
E

2
0
0
7
)
0
4
0

QCD on CELL

1. Introduction – What is CELL BE ?

The simulation of lattice QCD requires high performance computer resources. Future cal-
culations will be performed on next-generation Peta-FLOPS machines, and together with recent
developments in algorithms, we can more realistically describe the quark-gluon world, i.e., near
the real u,d quark masses with chiral fermions and dynamical quarks. In addition to state-of-the-
art computations by big collaborations, it is desirable to have a machine with a performance of
several hundred Giga- or Tera-FLOPS at each of our laboratories to achieve breakthrough studies
based on new ideas.

In this report we discuss the CELL BE (Broadband Engine) as one such candidate machine,
and present our first attempt to develop a QCD code on the machine. A similar study is reported in
Ref. [1].

CELL BE is a new multicore processor developed by SONY, IBM and Toshiba for the PS3
game machine. One CELL consists of one PPE (PowerPC processor element) and 8 SPEs (syner-
gistic processing elements). Its theoretical peak speed is 200 GFLOPS. Figure 1 shows a schematic
diagram of one CELL.

The CELL is available as a personal computer including

• PS3 itself (Sony) 1

• CELL Reference Set (Toshiba)

• QS20 (IBM) 2

• others.

A CELL BE software development kit (SDK) is available from the IBM website [2]. A useful
instruction material can be found in Ref. [3].

The QS20 has two CELLs, and therefore its peak speed is 400 GFLOPS. See Fig. 2. It is
desirable to employ a machine with this processor for lattice QCD calculations. We are developing
a QCD code (Quench and HMC) using a CELL in order to accumulate experience and to study the
potential of the CELL BE as a machine for lattice QCD calculations.

1.1 Limitations

The following points are known as disadvantages or limitations of using the present CELL as
a high-performance machine for numerical simulations.

• Only single precision is supported, i.e., double-precision calculations are performed by soft-
ware and are slow. We found that the calculations take ca. 7 times longer than the single-
precision case.

• Only C++ is available; Fortran is not available.

1One can construct a development and computational environment using PS3 by installing Linux. Currently, Fedora
Core is usually used. Yellow Dog Linux and other distributions will be available for CELL in future.

2QS21 has come recently.

2

P
o
S
(
L
A
T
T
I
C
E

2
0
0
7
)
0
4
0

QCD on CELL

XIO
 SPE

LS
(256KB)

DMA

1 SPE

LS
(256KB)

DMA

3 SPE

LS
(256KB)

DMA

5 SPE

LS
(256KB)

DMA

7MIC

Memory
Interface
Controller

SPE

LS
(256KB)

DMA

0 SPE

LS
(256KB)

DMA

2 SPE

LS
(256KB)

DMA

4 SPE

LS
(256KB)

DMA

6PPE
L1(32KBI/D)

L2
(512KB)

I/O

Flex-
IO

Flex-
IO0

XDR
Mem

25.6
GB/s

I/O

I/O

Total
76.8
GB/s

Figure 1: CELL BE Structure

• SPEs have a very small memory, LS (local storage), i.e., 256 KByte/SPE. Consequently,
programming is difficult.

Some of these disadvantage will be overcome in the near future.

2. Code Development

We start from our previous QCD code in Fortran 90, LTKf90 [4]. This code is written using
the Fortran 90 module. We replaced the module part of Fortran 90 with C++ class, and then made
a few modifications to most computational parts. Examples of modifications are given below.

Fortran90 C++

DO nu = 1, 4 for(int nu = 0; nu < 4; nu++)

{

if(nu==mu) cycle if(nu == mu){continue;}

c x+nu temp2 // x+nu temp2

c .---------. // .---------.

c I I // I I

c temp1 I I // temp1 I I

c I I // I I

c . . // . .

c x x+mu // x x+mu

3

P
o
S
(
L
A
T
T
I
C
E

2
0
0
7
)
0
4
0

QCD on CELL

���������	��
������
��������������������

������ "! �$#&%�'�(*),+ � �.-0/21 � �*3

4 %)) % "5
6 � 5

Figure 2: QS20 (IBM) in our laboratory

temp1 = u(nu) temp1 = u[nu];

temp2 = nu.gshift.u(mu) temp2 = gshift1(nu, u[mu]);

temp3 = temp1 * temp2 temp3 = temp1 * temp2;

temp1 = mu.gshift.u(nu) temp1 = gshift1(mu, u[nu]);

staple = staple staple = staple

& + (temp3.prodAD.temp1) + prodAD(temp3,temp1);

ENDDO }

3. Test Code on CELL

The most time-consuming part of the current standard QCD code is the matrix×vector calcu-
lations appearing in fermion CG (conjugate gradient).

Code A

//------------------------//

void function WxVect()

4

P
o
S
(
L
A
T
T
I
C
E

2
0
0
7
)
0
4
0

QCD on CELL

//------------------------//

/* for x = 1, Nx */

for y = 1, Ny

for z = 1, Nz

for t = 1, Nt

for c = 1, 3

for alpha = 1, 4

Yx,y,z,t,c,alpha = ∑ Wx’,y’,z’,t’,c’,alpha’
x,y,z,t,c,alpha Xx’,y’,z’,t’,c’,alpha’

//---------------------------//

void function para_WxVect()

//---------------------------//

for x = 1, Nx

para_WxVect(W,X,Y);

We rewrote this part as a function (see the above), and then the function para_WxVect was
transferred to the SPEs. PPE and SPE codes generally have the following structure:

PPE code

1. Set pointers that point to data regions of the SPE output.

2. Create SPE threads.

3. Start SPE threads.

4. Wait until the end of SPE threads.

SPE code

1. DMA (Direct Memory Access) transportation from main memory to LS.

2. Calculations.

3. DMA transportation of the data in LS to the main memory in PPE.

It is practical to construct a structure for storing DMA transferred data.

// One constructs a structure for storing DMA transferred data.

typedef struct

{

float a[N];

5

P
o
S
(
L
A
T
T
I
C
E

2
0
0
7
)
0
4
0

QCD on CELL

volatile float *result_p;

volatile int flag;

} __attribute__ ((aligned(128))) dma_data_t;

// Prepare the transfer.

prepare(Nspe);

// Transfer the data

dma_trans(Nspe,a);

// Calculation on SPE;

// At the first state we call a function serially.

// When the function is checked and ready, we move

// it to SPE.

for(int ispe=0; ispe<Nspe; ispe++){

execute(ispe);

}

// Post process

dma_done();

4. Performance

We measured the time required for the fermion matrix× vector calculations. See Table 1.
From this data, it is clear that the communication overhead particularly for the 1. time is too large.
If we convert this data to the floating point operation, it is 20 GFLOPS, i.e., 5% of the theoretical
peak speed.

DMA_GET Calculation DMA_PUT

1. time 1072 36 215
2. time 519 36 215
3. time 514 36 215
4. time 338 36 215

Table 1: Time required for data transfer and calculation in µ second. Ny = 4,Nz = 2,Nt = 2 The data trans-
ferred is 10.4 KByte for DMA_GET and 9.2 KByte for DMA_PUT. We repeated this transfer/calculation
1000 times and took the average of the results.

5. Concluding Remarks

In this study, we used a master-slave parallel strategy, where the PPE is the master and the SPEs
are slaves. The communication overhead is very large. Communication here is in broadcasting

6

P
o
S
(
L
A
T
T
I
C
E

2
0
0
7
)
0
4
0

QCD on CELL

form, and the EIB with 4 ring buses in Fig. 1 is not fully used. We are now studying MPI parallel
programing.

It is also necessary to consider the following.

1. The overlap of communication and calculation.

2. Finding a good granularity of parallelization for realistic lattice sizes.

Concerning the second point, consider a typical lattice size, Nx×Ny×Nz×Nt = 32×32×32×32.
We need sufficient memory for a gauge configuration and at least two fermion vectors in a CG
calculation, i.e., 350 MByte is required for the single-precision case. A PPE has sufficient memory,
but the total LS of eight SPEs, two MByte/CELL, is far from sufficient. Thus, we should divide
the lattice (i.e., decrease the granularity). On the other hand, one DMA transfer can provide 16
KByte, and therefore we need many DMA transfers. The overlap of the communications and the
calculations is essential.

Acknowledgments

We thank Y. Tsuchimoto for his invaluable support in the development of the system environ-
ment for our CELL machine. This work was supported by Grants-in-Aid for Scientific Research
from Monbu-Kagaku-sho (the Ministry of Education, Culture, Sports, Science and Technology),
No. 17340080. We used SR11000 at Hiroshima University and SX-8 at RCNP, Osaka University
to obtain the data used for comparison.

References

[1] N. Meyer et al., “QCD on the Cell processor", PoS(Lattice 2007) 039.

[2] http://www-128.ibm.com/developerworks/power/cell/

[3] Lecture on CELL at MIT: http://cag.csail.mit.edu/ps3/index.shtml

[4] S. Choe, S. Muroya, A. Nakamura, C. Nonaka, T. Saito and F. Shoji, “Lattice Tool Kit in Fortran 90”,
Nucl. Phys. B (PS) 106 (2002) 1037-1039. http://nio-mon.riise.hiroshima-u.ac.jp/ LTK/
Version 2.0 will soon appear.

7

