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1. Introduction

Over the past few years the QCDSF Collaboration has focused on simulations of lattice QCD
with 2 flavors of dynamical quarks. The real world consists, however, of N f=2+1 light quarks (up,
down and strange). We therefore extend our previous simulations to N f=2+1 where we continue to
investigate hadron and quark masses, weak matrix element, hadron form factors, moments of parton
distributions as well as a variety of other key parameters of the Standard Model. Our ultimate goal
is to bring the systematic uncertainties down to or below the experimental errors.

JLQCD found an unexpected first-order phase transition in the strong coupling regime at rela-
tively heavy quark masses when they employed the plaquette gauge action and the O(a)-improved
Wilson fermion action in three-flavor QCD simulations [1]. Using an improved gauge action should
give us significantly better control on the continuum extrapolation. Additionally, it is important to
reduce somehow the chiral symmetry breaking arising from the Wilson fermion formulation. A
well-known method to attenuate this symmetry breaking is adding a clover term. The UV filtering
method, which involves replacing covariant derivatives in the fermion action by smeared descen-
dents, is also becoming standard. We employ a tadpole improved Symanzik gauge action and
stout link smeared Wilson fermions with a clover term. We also improve the algorithm to reduce
simulation costs.

2. The Action

The tadpole-improved Symanzik action we use for N f=2+1 simulations is

S G =
6
g2
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, (2.1)

where the coefficients c0, c1 are taken from tadpole improved perturbation theory:

c1

c0
= −

1

20u2
0

, (2.2)

with c0 + 8c1 = 1, where u0 =
(

1
3 Tr 〈Uplaquette〉

)
1
4 . We write β = 6

g2 c0. In the classical continuum
limit u0→ 1 the coefficients assume the tree-level Symanzik values [2] c0 = 5/3, c1 = −1/12.

We continue to use clover fermions with the action

S F =
∑

x

{

ψ̄(x)ψ(x)− κ ψ̄(x)U†µ(x− µ̂)[1+γµ]ψ(x− µ̂)

− κ ψ̄(x)Uµ(x)[1−γµ]ψ(x+ µ̂)+
i
2
κcSW ψ̄(x)σµνFµν(x)ψ(x)

}

,

(2.3)

but replace the gauge links Uµ in all terms of the fermion action except the clover term by stout
links [3]

Uµ→ Ũµ(x) = eiQµ(x) Uµ(x) , (2.4)

with

Qµ(x) =
α

2i

[

Vµ(x)U†µ(x)−Uµ(x)V†µ(x)−
1
3

Tr
(

Vµ(x)U†µ(x)−Uµ(x)V†µ(x)
)

]

, (2.5)
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where Vµ(x) is the sum over all staples associated with the link. We take α = 0.1 and perform 1
level of smearing, corresponding to a mild form of UV filtering [4]. In this status report we present
results where we used the tree-level value for the improvement coefficient, i.e. cSW = 1, or used a
value obtained from tadpole-improved perturbation theory:

cSW =
1

u3
0

[1+g2(0.00706281+1.142004α−4.194470α2)] , g2 =
6
β

20u2
0

20u2
0−8

. (2.6)

Note that in the future we will use the results presented in [5].
This action has many advantages over our previously used one. In particular, due to UV filter-

ing, it is expected to have better chiral properties [6] and smaller cut-off effects [7]. One may also
hope that the tadpole-improved perturbative value of cSW is close to the non-perturbative value.

3. The Algorithm

The standard partition function for N f=2+1 improved Wilson fermions is

Z =
∫

DUDψ̄Dψe−S ,

S = S g(β)+S l(κl,cSW)+S s(κs,cSW) ,
(3.1)

where S g is a gluonic action, S l is an action for the degenerate u- and d- quarks and S s is an action
for the strange quark. After integrating out fermions

S = S g(β)− ln[det M†l Ml][det M†s Ms]
1
2 . (3.2)

We first apply even-odd preconditioning:

det M†l Ml ∝ det(1+T l
oo)2 det Q†l Ql , [det M†s Ms]

1
2 ∝ det(1+T s

oo)[det Q†s Qs]
1
2 , (3.3)

where

Q = (1+T )ee−Meo(1+T )−1
oo Moe , T =

i
2

cSW κσµνFµν . (3.4)

We then separate det Q†l Ql following Hasenbusch [8]

det Q†l Ql = detW†l Wl det
Q†l Ql

WlW
†

l

, W = Q+ρ. (3.5)

Finally we modify the standard action to

S = S g+S l
det +S s

det +S l
f 1+S l

f 2+S s
f r , (3.6)

where

S l
det = −2Tr log[1+Too(κl)] , S s

det = −Tr log[1+Too(κs)] ,

S l
f 1 = φ

†

1[W(κl)†W(κl)]−1φ1 , S l
f 2 = φ

†

2W(κl)[Q(κl)†Q(κl)]−1W(κl)†φ2 ,

S s
f r =

n
∑

i=1

φ
†

2+i[Q(κs)†Q(κs)]−
1

2nφ2+i .

(3.7)
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We calculate S f r using the RHMC algorithm [9] with optimized values for n and the number of
fractions. We now split each term of the action into one ultraviolet and two infrared parts,

S UV = S g , S IR−1 = S l
det +S s

det +S l
f 1 , S IR−2 = S l

f 2+S s
f r . (3.8)

In [10] we have introduced two different time scales [11] for the ultraviolet and infrared parts of
the action in the leap-frog integrator. Here we shall go a step further and put S UV, S IR−1 and S IR−2

on three separate time scales,

V(τ) =
[

VIR−2

(

δτ

2

)

Am1 VIR−2

(

δτ

2

)

]nτ
,

A = VIR−1

(

δτ

2m1

)

Bm2 VIR−1

(

δτ

2m1

)

,

B = VUV

(

δτ

2m1m2

)

VQ

(

δτ

m1m2

)

VUV

(

δτ

2m1m2

)

,

(3.9)

where nτ = τ/(δτ) and the Vs are evolution operators of the Hamiltonian. The length of the trajec-
tory τ is taken to be equal to one in our simulations.

4. Test calculations

We first tested our algorithm on small lattices of size 44 and 84. Figure 1 shows the acceptance
ratio and e−∆H for β = 7.2, κl = κs = 0.1245 and cSW = 1.0 for various simulation parameters. We
discarded for themalisation the first 200 trajectories and then calculated for each choice of the
simulation parameters about 1000 trajectories. e−∆H should be equal to one within error and this is
a good indicator of the correctness of the program. As seen in Fig. 1, we can keep high acceptance
and e−∆H≈1 by tuning parameters. Simulation results for the same parameters on a 163 32 lattice
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Figure 1: The acceptance (left) and e−∆H(right) for various simulation parameters. A:(m1,m2,ρ)= (3,3,0.1),
(1,1,0.1), (2,2,0.1), (2,2,0.2), (2,2,0.3), (2,2,0.4), (2,2,0.5), (3,3,0.5). The other simulation parameters are
fixed to nτ=20, CG residual for Monte Carlo resmc=10−10, CG residual for Molecular Dynamics resmd=10−7

and the rational approximation by n=2, 20 fractions and range [0.01,3].

are presented in table 1. The lattice spacing roughly corresponds to the so-called fine run of the
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MILC collaboration [12] which is using the same gauge action. Figure 2 is a plot of κV
c , which is

obtained by extrapolating the valence pion mass to zero, as a function of (r0mPS )2. We see that κV
c

for N f=2+1 is lower than for N f=2. Assuming that κV
c also has a rather mild β dependence, we

may consider this as an indication that our new action is much more continuum like.

r0/a amPS amV amN κV
c

4.89(15) 0.9089(20) 0.9520(25) 1.4828(53) 0.134599(63)

Table 1: r0/a, mPS , mV , mN and κV
c obtained from partially quenched calculations on a 163 32 lattice for

β = 7.2, κl = κs = 0.1245 and cSW = 1.0.

0 5 10 15 20

(r
0
 m

ps
)
2

0.1340

0.1350

0.1360

0.1370

0.1380

κ cV

β=5.20
β=5.25
β=5.26
β=5.29
β=5.40
β=7.20, n

f
=2+1

Figure 2: κV
c versus (r0mPS )2 at β = 5.2 ∼ 5.4 for N f=2 and at β = 7.2 for N f=2+1.

Results for β= 7.2, κl = κs = 0.1335 with tadpole improved cSW on a 163 32 lattice are presented
in table 2. They were calculated from 200 trajectories varying n of eq. (3.7), the number of fractions
and the precision of the coefficients for the rational approximation. Our results confirm that double
precision coefficients are needed to obtain the correct value of e−∆H . Note that the average plaquette
value as well as the average minimum and maximum eigenvalue are consistent for the different
choices of the algorithmic parameters. But since S f r may be O(108) (e.g. on large lattices) the
algorithm may not be correct when using single precision coefficients. For the parameters shown
in the last row of table 2, the ratios for the force contributions from the different terms in the action
are

Fdetl

Fdets

= 2 ,
F f 1

Fdets

∼ 30 ,
F f 2

Fdets

∼ 10 ,
F f r

Fdets

∼ 10 ,
Fg

Fdets

∼ 90 . (4.1)

F f r for n=4 is 40% smaller than for n=2.

5. Conclusion

In this contribution we have presented the status of our N f=2+1 project. We found indications
for our action to be better than our previously used action. Furthermore, we tested the correctness
of our algorithm. The performance of our program for matrix multiplication is about 20% of the

5



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
7
)
0
4
1

A status report of the QCDSF N f=2+1 Project Yoshifumi Nakamura

n fr. pr. P τint e−∆H Pacc λmin λmax

2 32 s 0.625591(55) 2.07(76) 1.167(25) 0.96 0.011247(64) 2.4788(44)
4 40 s 0.625578(52) 2.10(85) 1.529(24) 0.99 0.011306(62) 2.4757(40)
2 32 d 0.625528(41) 1.74(46) 0.995(17) 0.91 0.011316(66) 2.4805(33)

Table 2: Simulation parameters and results for the value of the plaquette, the integrated autocorrelation
time of the plaquette, e−∆H , acceptance, minimum and maximum eigenvalues of Q†Q on a 163 32 lattice for
β = 7.2, κl = κs = 0.1335 and tadpole improved cSW=1.612. The parameters are the number n of eq. (3.7),
the number of fractions (fr.) and the precision of the coefficients for the rational approximation (pr.). The
other parameters are fixed to nτ=60, m1=3, m2=3, resmc=10−10, resmd=10−8 and ρ=0.1.

peak performance on the SGI Altix 4700. We are planning to implement better integration schemes
and test other separations, for instance,

S UV = S g, S IR−1 = S l
f 1, S IR−2 = S l

f 2+S s
f r +S s

det +S l
det . (5.1)
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