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1. Introduction

Gauge theories in more than 4 dimensions have gained a lot of attention asdepgpaiseral-
ization of the gauge - Higgs sector of the Standard Model. Many differentels have been dis-
cussed in the literature, one of the common features being that the extra insea® taken to be
compact with a compactification scalgR The expectation is that this leads to a four-dimensional
effective theory at a scale < 1/Rwhose zero modes correspond to the Standard Model particles.
In this effective theory, some components of the gauge field in the extra sliometake on the role
of the Higgs particle and the Higgs potential is generated dynamically thrawragttum corrections
[f]. From the four-dimensional point of view these fields act as scalasiscan potentially acquire
a vacuum expectation value. That is, the gauge symmetry breaks spmrgalyevia the Hosotani
mechanism([[2] and the gauge particles become massive just as in the Stistudigld Whether
this occurs in a given model has to be determined by examining the Higgs pbireetiah case.

We study a system witBU(N),N = 2,3 on an orbifoldR* x S'/Z,. The five-dimensional
fields are expanded in Fourier or Kaluza-Klein (KK) modes along the éktnansion,

1 1 2
E(x,x5) = ——EOx) +—==Y EM(x)cognxs/R) for even fields 1.1
O(X,X5) = ;R S 0" (x)sin(nx/R)  for odd fields (1.2)

n=1

The orbifold boundary conditions are implemented in the following y][3fidlds related by a
reflection of the fifth coordinate are identified up to a global group comijmga

9AL (X, Xs)g 1 = Ay (X, —Xs)

whereg? € center ofSU(N). 1.3
9As(X,%5)g 1 = —As(X, —X5) 9 N) (1.3)

The fixed points of the reflection & = 0, MR define four-dimensional boundaries where the gauge
group is broken down to a subgroup which depends on the choige Tifie even components of
As(X) transform in some representation of the remnant gauge group geneyatezgleven compo-
nents ofA, (x). For our examples we have

su) Bu) with g = —io® even fieldsAL? (Higgs), A (2)
SU(3) 3 SU(2) xU (1) with g=diag1,1,—1) even fields:A¢>%"(Higgs), AL>3E (W=, Z,y).

(1.4)
The SU(3) model is the simplest case which generates the electro-weak symmetry pétteen o
Standard Model. There, the Higgs field transforms in the fundamentalsepiation of the remnant
SU(2).
If the scalar field has a non vanishing vev the terms involigin the gauge Lagrangean

1 2 1 —
=t {FuyFuy) — —tr{FusFyus) — ——tr{(D 2 1.5
% 22 r{FuvFuv} 22 r{FusFus} 7z r{(DmAm)} (1.5)

generate a mass term for the gauge fields and the scalars through ta®dpebs, whereDy, is
defined byDuF = duF + [(Am),F]. In theSU(2) model, it has the eigenvalues

Az (mR2Z=a? (1.6)
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’ iggs) 1 (m =a? :
1200 nR)2=a2,0 (1.7)
higher KK modes (m,R)? = g—i, <”§;’>2. (1.8)

a is related to the vev of the scalar field by

a = gs(ADR (1.9)

and its numeric value is determined by the minimum of the Higgs potential. A pertielzaticu-
lation to one loop yieldq]6]
9 2 cog2rmma)
64711°R* él m° )
The minimum ofV is ata = 0 and as a consequence the remnant gauge symmetry is unbroken and

the gauge particles are massless. The same is tlg(i8) which suggests that one has to fall back
on a more complicated model if one still hopes to reproduce the Standard.Mode

V:

(1.10)

2. Lattice simulations and perturbation theory at finite cutoff

However in order to fully explore the viability of extra-dimensional gaugeties an analysis
beyond 1-loop perturbation theory is needed. The reason for this isetimatving the cutoff in
perturbation theory drives the extra-dimensional gauge theory to tled aint. This can be seen
by the following argument: the theory is parametrized by two dimensionlesditigsn

(2.1)

Ns is the ratio of the cutoff\ to the compactification scale (here we take the interval lemg)rand

B the dimensionless coupling which we use in the lattice simulations. In a pert@leatzulation
factors ofg2A can appear from loop correctionsHence, when the cutoff is taken to infinity

the dimensionless couplingg/A has to vanish, in order to keep the theory perturbative. This is
only possible whergs — 0 (andf3 — «) and the interactions vanish. On the other hand an extra
dimension of finite siz& and infinite cutoff also means thidt — . It is therefore only possible

to study the truly interacting theory in a framework where the cutoff is finitethadoupling not
necessarily perturbative. The lattice provides such a setup.

And indeed, in contrast to the perturbative results, lattice simulation obtl{&) model [$]
reveal that th& boson is massive (cf. Figd](fl, 2)) and ¢y = 6 the Higgs mass is significantly
heavier than predicted by perturbation thedfy[J7[]6, 8]. The simulatiome d@ne on(T /a) x
(L/a)® x Ns lattices wherea = A% is the lattice spacing. We use the Wilson plaquette gauge
action. The system has a first order phase transitigh-ai3.(Ns, L /a) which separates a confined
(B < Bc) from a deconfinedf > ) phase. The particle spectra can only be extracted in the latter.
Fig. @) shows ground state masses of the scalar and the gauge bostifefent values of the

1For some quantities like the Higgs potential such factors are absent apl-lois conjectured that there the
perturbative series organizes itself in powers of the four-dimensmmglinggs = gs/v/27R instead. However, this
requires to consider the full renormalization as for instance at 2-loa@gitbgnic corrections appea[ll [9]. For the Abelian
theory compactified o' a 2-loop calculation has recently been doneEr|| [10] and confirms theatorge



Higgs mechanism in five-dimensional gauge theories Magdalena Luz

effective ground state masses, $ = 2.0, L/a=14,N5=6
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Figure 1: Ground state masses of scalar (square, Bigure 2: Effective masses of the gauge and the
amonds) and gauge particles (circles, triangles) &walar particle aB = 2.0 from thel /a = 14 lattice.
L/a= 12 14 lattices. The dashed line is the 1-loophe plateaus where the masses are extracted are in-
perturbation theory prediction for the Higgs mass. dicated by horizontal bars.

couplingB. Finite volume effects are negligible as can be seen from the figure by comlae
data fromL/a= 12 andL/a = 14 lattices (both simulations hatg = 6 andT /a= 96). In Fig. ()
we give an example of the effective masses of the two particlBs=ag.0.

In order to resolve the conflict between the results from perturbatiomytlaaal lattice we redo
a perturbative calculation, but leave a finite cutoff in place. This can besed by describing
the lattice action with an effective continuum Lagrangean a la Symanzik. Metals on this
calculation can be found ifi [L11]. The expansion in the lattice spacing isstensly truncated at
O(a?). Up to this order, there are two additional operators which contribute to tBs matrix for
the gauge particles

C
co® = %Etr{FMN(Dﬁ +D{)Fun},  c=c®(Ns,B) (2:2)
Tac 4 3
c00® = TEVREEL (5(k0) + 506~ TR, c0=CI(Ne B, 23)

0'® is a correction from the bulk action ar@® is introduced by the orbifold reflection on the
boundary. The coefficientsandcy are cutoff dependent throughandNs. For the Wilson plaque-

tte actionc = %2 at tree level. As a consequence, the mass eigenvalues are modified ahdpbe
of the Higgs potential changes quite significantly. More concretely, irBthe) case the gauge
boson masses change from Eqs]([L.8, 1.8) to

3(0) /1 : 2 2, Co0® T 2 TP
A Z : R)c = _ — 2.4
. (Z' boson) : (mzR) o+ 5 N5+ca N2 (2.4)
higher KK modes:(mR)> = n?, n>0 (2.5)
2
= (nta)’+ C(gl\1+c(nia)4$, n>0 (2.6)

where we have truncated the result©&4?) andO(1/n). The masses of the scalars come from the
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Figure 3: 1-loop Coleman Weinberg potential: The first plot shows thedard perturbative calculation at
N\ — oo, the second plot shows influence of the bulk cutoff effectefe 1.72. An additional local minimum
is visiible ata = 0.5, however the global minimum is still @ = 0. In the third figure at = 2.5 the
minimum ata = 0 has disappeared, the symmetry is spontaneously brokaallyFin the last picture the
effect of the boundary coeffieciea§ appears, the minima have shifted away fren@5 to +0.37.

gauge fixing term and are unchanged with respect to [Eq$.[(1]} 7, 1.8)e$hlting Higgs potential
depends on the two coefficientsandcg. Some examples are shown in FiJ. (3). The upper left
plot shows the original potential from Eq. (1 10) without any cutoff etffgc = co = 0). If we turn

on the bulk effects only, by increasirmgbut keepingco = 0, a second local minimum appears at
a = +0.5. For large enough > 1.75 this minimum turns into a global one, indicating symmetry
breaking. Further increasimgtransforms the minimum at = 0 into a maximum (cf. the upper
right plot and lower left plot in Fig.[{3)). With only the effect of the bulkroections, it is however
not possible to shift the miminum of the potential away from either 0.5r Bor this the boundary
coefficientcy is needed as shown in the last plot of Fig. (3). The orbifold boundanglition
breaks the periodicity of the potential and the minimal value of the Higgs poteatiabe moved
continuousely away from 0 by varyirgg. The finite cutoff immediately also introduces a constraint
on the value of the vev which should not exeg@ br

INNs
la| < 26 (2.7)
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Figure 4: Comparison of the gauge boson massegure 5: Ratio of my to mz. Lattice data from
from the lattice with the KK masses. The solid line/a = 12 lattices (circles) ant/a = 14 lattices (tri-

is the ground state of th2 boson, the dashed lineangles). The squares show the corresponding ratio
the first excited state. Lattice results (symbols) arefedm the potential calculation.

L/a=12 T/a=96.

In the case of th&U(2) model we can directly compare the cutoff corrected potential calculation
to our simulation results. Fig[](4) shows the KK masses from[Ed. (2.4) (igrstate, solid line) and
Eq. (2.6) forn = 1 (first excited state, dashed line) together with the corresponding latticemas
The matching of the lattice to the perturbative setup is done by defining

(tr{®>PT}IN2
2

xat(B) = (2.8)

where(tr{®®'}) was calculated on the lattice. The Higgs figlds defined by the commutator of
the extra-dimensional potentighs)a: (N, ) with the orbifold projection matrix

1
@(ny) = [a(As)iat(Ny), 9]  where  a(As)iat(Ny) = rl\b(P_ P) (2.9)
andP is the Polyakov line along the extra dimension at the point with the four-dimeadsitteger
coordinates, [[L2]. We equate,; with the perturbatively defined from Eq. (1.9). Even though
we cannot claim quantitative agreement, we do find a similar qualitative beludit® perturbative
KK masses and their lattice counterparts. In Fp. (5) we show the ratio ofithgsHb the gauge
boson maspyz. Here, the matching is done by tuning the coefficieraadcg in the potential such
that it takes its minimal value &y, = aj5:. We then compute the Higgs mass from the potential
by
N _, d?V
2 [ —_
(MyR)%2 = N53R4 ozl (2.10)

Omin

The most striking result in this figure ist thatz > 1 can be reached on the lattice, whereas the
perturbative results are all way below one,
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3. Conclusions

We have calculated the effective Higgs potential in five-dimensional (@), N = 2,3
gauge theory compactified on an orbifold. In contrast to prior suchitseffil, we include a finite
cutoff explicitly into our calculation. The cutoff effects are controlled by tvawfficientsc and
co. We find that cutoff effects can trigger spontaneous symmetry breakingoth SU(2) and
SU(3). We therefore make contact between the perturbative results and theertombatively
defined lattice study where in the casestf(2) massive gauge bosons where found.

In the case o8U(3) we find that there are combinations of the cutoff coefficients which lead
to the experimentally measured value of the Weinberg angle di£9s0.877, whereas without
including cutoff effects the value is c8g = 0.5. Furthermore it is possible to obtgiy o > 1 for
smallNs. From our point of view these results are promising and a fully non pextieblattice
study of theSU(3) model might well lead to phenomenologically significant results.
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