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We present simulation results for the 2-flavour Schwinger model with dynamical overlap

fermions. In particular we apply the overlap hypercube operator at seven light fermion masses. In

each case we collect sizable statistics in the topological sectors 0 and 1. Since the chiral conden-

sate Σ vanishes in the chiral limit, we observe densities for the microscopic Dirac spectrum, which

have not been addressed yet by Random Matrix Theory (RMT). Nevertheless, by confronting the

averages of the lowest eigenvalues in different topological sectors with chiral RMT in unitary

ensemble we obtain — for the very light fermion masses — values for Σ that follow closely the

analytical predictions in the continuum.
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1. The Schwinger model

The Schwinger model [1] describes Dirac fermions in d � 2, interacting through a U
�
1 � gauge

field. In the Euclidean plane the Lagrangian reads� �
ψ̄ � ψ � Aµ ��� ψ̄

�
x ��� γµ

�
i∂µ � gAµ � � m 	 ψ � x � � 1

2
Fµν
�
x � Fµν

�
x ��
 (1.1)

This is a popular toy model for QCD — for instance it is endowed with confinement. As a qual-
itative difference, however, there is no spontaneous chiral symmetry breaking. For N f degenerate
flavours of mass m the chiral condensate is given by1

Σ
�
m ������ ψ̄ ψ � ∝ � mN f � 1

β � 1 ��� N f � 1 � �
β � 1 � g2 ��
 (1.2)

Here we consider N f � 2. In this case, there are analytical evaluations (using low energy assump-
tions) for the above proportionality constant in the case of light fermions (m � 1 �� β ),

Σ
�
m �� � 0 
 372

�
m � β � 1 � 3 ! 2 "

0 
 388
�
m � β � 1 � 3 ! 3 " (1.3)

2. Lattice formulation

We investigate the lattice formulation with compact link variables Uµ # x $ U
�
1 � , and with the

plaquette gauge action. For the fermions we employ an overlap hypercube fermion (overlap-HF)
Dirac operator of the form (in lattice units)

DovHF
�
m �%� � 1 � m

2 � D � 0 �ovHF � m � D � 0 �ovHF � 1 � � DHF � 1 �&�(' � D†
HF � 1 � � DHF � 1 ��
 (2.1)

D � 0 �ovHF obeys the (simplest) Ginsparg-Wilson relation. Unlike the standard overlap operator with a
Wilson kernel [4], we insert the truncated perfect hypercube fermion operator DHF [5]. It involves
couplings to nearest neighbour sites, and over plaquette diagonals (in the latter case gauging av-
erages over the shortest lattice paths). By construction this kernel is approximately chiral already,
and the overlap formula amounts to a correction that renders chirality exact.2

The overlap-HF has been applied in quenched QCD [7], and the HF was also used dynamically
in finite temperature QCD [8]. In the 2-flavour Schwinger model DovHF has been first simulated
with quenched re-weighted configurations [6, 9]. Compared to the standard overlap operator there
is some computational overhead in the kernel, but DovHF has the following virtues [6]:) Faster convergence in the polynomial evaluation of DovHF. Moreover the limitation to the

use of low polynomials also improves the numerical stability.) Higher degree of locality and approximate rotation symmetry.) Improved scaling behaviour.

All these virtues are based on the similarity of the kernel to the overlap operator [5],

DovHF * DHF 
 (2.2)

1For N f + 1 the non-vanishing value Σ , 0 - + , eγ . 2π3 / 2 - g 0 0 1 16g originates from an axial anomaly and therefore
from explicit chiral symmetry breaking (hence there is no contradiction to the Mermin-Wagner theorem).

2To be precise, we use the chirally-optimised hypercube fermion (CO-HF) of Ref. [6]. This is optimal for our
algorithm to be described in Section 3.
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3. The simulation

Here we report on HMC simulations, which are also facilitated by the property (2.2). Our
algorithmic concept follows the simplified HMC force for improved staggered fermions of the
HF-type [10]. The fermionic force of the standard HMC algorithm

ψ̄Q � 1
ovHF � Q � 1

ovHF
∂QovHF

∂Ax # µ � ∂QovHF

∂Ax # µ Q � 1
ovHF 	 Q � 1

ovHFψ � (3.1)

with the Hermitian operator QovHF � γ5DovHF , is simplified to

ψ̄Q � 1
ovHF # ε � Q � 1

ovHF # ε ∂QHF

∂Ax # µ � ∂QHF

∂Ax # µ Q � 1
ovHF # ε 	 Q � 1

ovHF # ε ψ 
 (3.2)

QovHF # ε approximates QovHF to a moderate (absolute) precision of ε � 10 � 5 . This approximation is
useful and cheap thanks to relation (2.2) (which does not apply for the standard overlap operator).
The Metropolis accept/reject step uses QovHF to machine precision (10 � 16), which renders the
algorithm exact. Our first experience at β � 5 on a 16 � 16 lattice, with trajectory length τ �
1 � 8 � 20 � ∆τ , was reported in Ref. [11]. Applying the Sexton-Weingarten integration scheme
[12], we have meanwhile a compelling confirmation of acceptance rates in the range 0 
 3 
&
&
 0 
 5
for the masses m � 0 
 01 
&
&
 0 
 24. Acceptance rates for the special case QovHF # ε � QHF were also
given in Ref. [13]. Our results show a remarkable stability in m down to very light fermions. This
holds for the total computing effort as well; note that the magnitude of the leading non-zero Dirac
eigenvalue stabilises due to the finite size. In Ref. [11] we demonstrated that reversibility holds to
a good precision. The degree of locality is stable in m and strongly improved, even compared to
the free standard overlap fermion, where the couplings decay as exp

� � r � (r being the taxi driver
distance between source and sink). For the free overlap-HF this decay is accelerated to exp

� � 1 
 5r � .
At β � 5 it slows down only slightly to exp

� � 1 
 45r � , with hardly any dependence on the masses
that we investigated [11].

4. Results

In view of the ε-regime, we simulated at 7 fermion masses and collected data in the sectors
with topological charge ν � 0 and

�
ν

� � 1 (index of DovHF). The corresponding statistics and
the mean values of the leading non-zero eigenvalue λ1 of the Dirac operator — stereographically
projected onto a line — are given in Table 1.

Chiral RMT has been worked out for the case of a non-vanishing chiral condensate Σ in the
chiral limit. This yields predictions for the low lying Dirac eigenvalues [16] in the ε-regime, which
apply well in QCD [14, 15]. We show in Figure 1 the measured cumulative densities in our case,
in the topologically trivial sector. This is compared to the RMT predictions for the parameters
we are using (we refer to the unitary ensemble; the corresponding formulae are summarised in the
second work quoted in Ref. [15]). They converge in terms of the dimensionless rescaled eigenvalue
ζ1 � λ1ΣV for very light or very heavy masses, where the latter limit corresponds to the quenched
case. In the chiral limit this is obviously inapplicable in our situation. The plot in Figure 1 on
the right also shows that the shape of the density for ζ1 at finite mass does not match the RMT
predictions. Instead we see a stabilisation in the eigenvalue λ1 itself (in a fixed volume V ).
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m ν � 0
�
ν

� � 1 total topological� λ1 # ν � 0 � � λ1 # � ν � � 1 � statistics transitions

0.01 2079 0.1328(7) 584 0.1735(10) 2663 3

0.03 1131 0.1311(18) 563 0.1737(24) 1668 2

0.06 752 0.1254(24) 711 0.1728(20) 1398 5

0.09 957 0.1157(22) 546 0.1713(24) 1504 7

0.12 699 0.1082(28) 532 0.1664(26) 1505 8

0.18 830 0.1076(28) 609 0.1660(24) 1493 13

0.24 639 0.1096(28) 1030 0.1642(18) 1757 17

Table 1: Our statistics for seven fermion masses in the sectors with topological charge ν � 0 and � ν ��� 1. The
(stereographically projected) leading non-zero eigenvalue λ1 of the Dirac operator is measured separately in
each sector.
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Figure 1: On the left: the cumulative densities of the lowest Dirac eigenvalues for different fermion masses.
On the right: the chiral RMT prediction with the corresponding parameters, which differs from the data as
expected. The RMT curves converge for ζ1 � λ1ΣV in the limits µ � mΣV � 0 and µ � ∞ , whereas in the
measured data the density of λ1 stabilises in the chiral limit.

In this setting a total density ρ
�
λ � ∝ λ 1 � 3 is consistent with eq. (1.3) [17], and we can approxi-

mately confirm this behaviour, see Figure 2. The exponent is not singled out very precisely, but the
essential observation is the absence of a Banks-Casher type plateau in the total eigenvalue density
near 0.

Nevertheless, we observed an amazing connection to chiral RMT with respect to the ratio of� λ1 � in the sectors with topological charge
�
ν

� � 0 and 1. We illustrated in Ref. [11] the chiral
condensate Σ as a function of this ratio at various masses, according to chiral Random Matrix
Theory [16]. The combination of this RMT relation with Σ

�
m � in eq. (1.3) enables us to eliminate

the chiral condensate and to arrive at a prediction for the ratio� λ1 # � ν � � 1 �� λ1 # ν � 0 � � m � �
which can be directly confronted with the numerical data in Table 1, see Figure 3.
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Figure 2: Histograms for the total eigenvalue density ρ � λ � near zero for our two lightest fermion masses.
The data are consistent with the expected behaviour ρ � λ � ∝ λ 1 � 3, and we see a wiggle structure in addition.
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Figure 3: The results for the eigenvalue ratio of the leading non-zero Dirac eigenvalues in the topological
sectors 0 and 1, � λ1 ��� ν � � 1 �
	 � λ1 � ν � 0 � . Our data are compared with the theoretical prediction based on a
combination of chiral RMT in the ε-regime and analytical formulae for Σ � m � from Refs. [2, 3].

The simulation results reveal a significant dynamical effect. For masses m �� 0 
 15 we take a
step towards the p-regime behaviour (insensitivity to ν) and the condition m � β � 1 � 2 is not on
solid grounds anymore. But for m  0 
 12 the data match the predictions remarkably well (at very
light masses the measured ratio tends to be just slightly above the prediction), although the latter
combines apparently incompatible ingredients from chiral RMT the ε-regime and from infinite vol-
ume. This result can be compared to a study using quenched re-weighted configurations with the
standard overlap operator [18]: that study obtained Σ

�
m � 0 � � 0 and a behaviour consistent with

Σ ∝ m1 � 3 at large masses, but the proportionality constant was not reproduced and the proportion-
ality could not be observed at small masses. In our case, Figure 3 is sensitive to both, the exponent
and the proportionality constant in eq. (1.3), and both are confirmed well.
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Figure 4: A thermalisation history for the dynamical overlap-HF in QCD at β � 5 � 6 on a 84 lattice. The
algorithm is driven by the full HF force — corrected by a Zolotarev polynomial — and the trajectory length
is 1.

5. Conclusions

The overlap hypercube fermion has some computational overhead compared to the standard
overlap fermion, but a number of benefits: better locality, approximate rotation symmetry, im-
proved scaling and the applicability of a simplified HMC force. The restriction to low polynomials
is particularly favourable for the numerical stability.

In our application to the 2-flavour Schwinger model on a 16 � 16 lattice at β � 5 we obtain
useful acceptance rates and reliable reversibility. We cumulated statistics at masses m � 0 
 01 � 0 
 03 �
0 
 06 � 0 
 09 � 0 
 12 � 0 
 18 and 0 
 24 in the sectors of topological charge

�
ν

� � 0 and 1 . We revealed
a new type of microscopic Dirac spectrum, which is not explored analytically. Nevertheless, by
combining RMT formulae for the spectrum with analytical expressions for Σ, we obtained a pre-
diction for the mass dependence of the ratio � λ1 # � ν � � 1 �&�(� λ1 # ν � 0 � , which matches our numerical data
at m  0 
 12 impressively well.

A. Testing the dynamical overlap-HF in QCD

We also implemented the HMC algorithm for DovHF in QCD, with the HF force which can be
chirally corrected with Zolotarev polynomials of any degree p. We display thermalisation histories
of the dynamical overlap-HF in QCD, on 84 lattices with polynomial degrees p � 6 and 8. They are
applied to the HMC force in the spectral interval ! b � λmax " with a lower bound b � 0 
 1 or 0 
 05 (λmax

is the maximal Hermitian eigenvalue). For the precision parameter in eq. (3.2) we chose ε � 10 � 4,
the trajectory length now amounts to τ � 1, and the accept/reject step is kept on machine precision.

At β � 5 
 6 thermalisation sets in without problems (see Figure 4), whereas β � 5 
 7 is plagued
by a first order phase transition, which is further pronounced at β � 5 
 8 (Figure 5).

Acknowledgement : We are indebted to Poul Damgaard, Stephan Dürr, Martin Hasenbusch, Urs
Heller, Jacques Verbaarschot and Tilo Wettig for helpful discussions. J.V. was supported by the
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Figure 5: Thermalisation history for the dynamical overlap-HF in QCD on a 84 lattice at β � 5 � 7 (on the
left) and β � 5 � 8 (on the right). In contrast to β � 5 � 6 (Figure 5) the trajectories for cold and hot starts level
out on different plateaux, which indicates a first order phase transition.
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