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To model pions of two-flavor QCD we construct a lattice fielddhy involving two flavors of
staggered quarks interacting strongly witl{1) gauge fields. In the massless quark limit, this
theory has ar8J (2) x Ur(2) x Ua(1) symmetry. By introducing a four-fermion term we can
break theUa(1) symmetry and thus incorporate the physics of the QCD ananvdey can also
tune the pion decay constanito be small compared to the lattice cutoff by starting witreatra
fictitious dimension, thus allowing us to model low energgrpphysics in a setting similar to
lattice QCD from first principles. However, unlike latticedR, a major advantage of our model
is that we can easily design efficient algorithms (DirectathRAlgorithms) to compute a variety
of quantities in the chiral limit. Here we show that the modetonsistent with the predictions of
chiral perturbation theory in the-regime.
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1. Introduction

Current lattice calculations are typically carried out aphysically large quark masses, and
chiral perturbation theory is used to extrapolate to réalguark masses. A study of the range of
guark masses over which the chiral expansion may be safeliedgs thus useful.

One way to check the reliability of chiral extrapolationgasverify them in different regimes.
There are many such regimes depending on the values of thenmigses and the physical box
sizes, but the most popular examples are flregime and the-regime. Interestingly, in all the
regimes the extrapolation formulas depend on the same l@fggrconstants that describe the
chiral Lagrangian. Hence if the data from a lattice caldatatan be fit in both the regimes with
the same low energy constants one would gain more confidartbe extrapolations.

Studies of QCD-like models may teach us more about chirghpgtations. Motivated by this,
we study a lattice field theory model of pions in two-flavor Q@bich we previously introduced
[1, 2, 3, 4]. This model is particularly attractive sincestiery much like QCD in its formulation
but we are easily able to design very efficient algorithmgudy a variety of quark masses.

2. Model, Algorithm, and Observables

The Euclidean space action of our model is (note that thel daator of% in the fermion
kinetic term has been absorbed into the fields):

d+1 ) _ . 2
S= —Z Z Ny x e'(p“'xwa.UX+[1 — e*IfPu.xwx_l_ﬁ L.UX] — Z {mwXL,UXJr g <wa.Ux> :| , (2.1)

p=1

wherex denotes a lattice site ondat 1 dimensional hyper-cubic lattidg x LY. L is a fictitious
time direction and will be used to turfe, the non-perturbative physical mass scale, to be small
compared the lattice cutoft.d is the usual Euclidean space-time b@x, and () are two compo-
nent Grassmann fields that represent the two quawk) flavors of massn, andg, x is the compact

U (1) gauge field through which the quarks interagt=1,2,...,d,d + 1 runs over thed + 1 di-
rections and the: = 1 direction denotes the fictitious temperature, while theaming directions
represent Euclidean space-time. The staggered fermioseplagtorsn,, x obey: nfx =T and

nfx =1fori =23, ...,d+ 1. T controls the fictitious temperature and will be used to tunthe
continuum limit & < 1). The couplingcWill set the strength of the anomaly.

Whenc;m= 0, the action exhibits a glob&J (2) x SUr(2) x Ua(1) symmetry likeN; = 2
QCD. The partition function of this model is equivalent tatlof a classical statistical mechanics
model involving configurations made up of gauge invariarjects, namely monomers, dimers,
pion loops, and instantons [5]. These configurations andelaed constraints are discussed in
more detail in [4].

To study this model, we have designed a Directed Loop Algorif6]. The algorithm and the
many observables such as two point correlation functiams;eptibilities, and current susceptibil-
ities, are discussed in [4].
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3. Chiral Perturbation theory in the e-regime

In the phase of broken chiral symmetry and large anomaly,diveenergy physics of our
model is described by the Euclidean chiral Lagrangian

£ = F{tr(@,u 19,0) —matr (U +UT) (3.1)

whereF is the chiral pion decay constark,is the chiral condensate, akle SJ (2) is the pion
field. Thee- regime is the limit wheré., the linear size of the four dimensional hypercube, is large
such thatFL >> 1 butm=L# is fixed. Many observables in theregime have been computed and
can be found in the literature. For example the behavior efdbndensate susceptibilig as a
function ofL atm= 0 was obtained in [7] for th©(N) model. TheN = 4 result is

2L [1 (331 a (32)

Xo = 2 FL)2+(FL)4+“'

Further, the chiral and vector current susceptibilitteaindY, (respectively) were obtained in [8]

F2 B1 a W 3p be
= S (i e e B o)

(3.3a)

F2 B1 a u? 3B by
Y, = > <{1+ FL? + —(FL)4 +} - ﬂ{lJr GE + FLP +} +ﬁ(u4)>
(3.3b)

for smallu= =mL4[1+-3B;/(2(FL)?)]. In these relationg; = 0.14046 is the shape coefficient and
a,a be,by are constants that depend on higher order low energy cdestAtsoY, =Y, atu= 0
reflects the chiral symmetry of the theory.

We show that the calculations in our model are consistett &is.(3.2) and (3.3). We choose
c=0.3 andT = 1.733 with fixedL; = 2. These parameters are chosen to ensure that chiral symme-
try is spontaneously broken and the anomalous pion nMgyié about 1 in lattice units. At this
T, F ~ 0.1 in lattice units, which should make our results less seesib lattice artifacts. Fig.(1)
shows data fol; as a function of. for m= 0. The solid lines are fits to Eq.(3.3). The fits are very
good if we allowa’ # 0 and fit to lattice sizes above~ 24. We can then extragét=0.09921) and
a = 2.7(1) with a x2/DOF = 0.8. However, as shown in the figure, this means that se#ting0,
i.e.. using only the leading correction in the chiral expanswill not be a good approximation for
L < 48. This is a result of the smallnessaf ;. In other words, although our data is consistent
with the Eq.(3.3), unfortunately we are not sensitive touthiversal corrections at order(1/L?).

We now consider the condensate susceptibjigy Fig(2) is a plotx/L* as a function ot..
The solid line is a fit to the data using the Eq.(3.2) whiere- 0.0992 is fixed and only data for
L > 20 is used in the fit. We find = 0.18622), a = 3.0(2) with a x?/DOF = 1.3. Again, the
universal correction at orde(1/L?) is small compared to the next order non-universal corractio
for L < 48.
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Figure 1. Vector current susceptibilityc as a function ol at T = 1.733,c = 0.3 andm =0 [Yc = Y/].
The solid line shows the fit witkF = 0.0992 anda’ = 2.7. The dashed line shows the same curve but with
a = 0, and the dotted line shows the infinite volume lifft/2.

We have neglected the Iflg) corrections that arise at the ordef(EL)* [9]. The reason is as
follows: Consider the chiral condensate susceptibilitfem(3.2). Using the results of [7, 9, 10],
we can obtain the logarithmic corrections to Eq. (3.2). Irtipalar it follows that

5 3B 1 { 15

1
Xo =3 [H FoLs * EaE O+ 1 (09FL) | +O(F5L5)] (34)

where nowa = (3B2 + 158;)/2 + 3[log(Am/F) + 4log(As /F)]/16m and B; = —0.020305 is
another shape coefficient. The mass scaAlgs/\s represent the non-universal information of the
model and are defined in [7]. Assumihg= 20 is the smallest lattice size ahgd—= 64 is the largest
lattice size we use in the fits, the change in the logarithmicection term 15lo@,/L1)/(1617) ~
0.1 is within errors of the constargt = 3.0(2) obtained above by fitting thg, data to Eq.(3.2).
Thus, our errors are still large and we are not yet sensitiieé logarithmic corrections. Interest-
ingly, since 15logFL)/(16m) is much smaller thaa in the region of our fits, we estimate that
a~ 3[log(Aw/F)+4log(As /F)]/(16m?), which means thatog(Ay /F) +4log(As /F)] ~ 150 is
unnaturally large, and the factq% is essential to keep the coefficient of(EL)* of order 1. In
other words factors Iikqﬁ cannot always be assumed to be small since they can be rimaltipt
large numbers.

Having confirmed that the results are consistent with E8)(@henu = 0, we can also check
that for consistentency with Eq.(3.3) at ord€r. A way to do this is to tune the quark mass



Pion physicsin the strong coupling limit: A poor man’s QCD? D. J. Cecile

0.012- -

0.011 .

<t = i

- - ]

e} —]

>< r i

0.01h 7

0.009- = Te-TTme

0.00 _—| | | | | | i

18 24 32 40 48 64

L

Figure 2: Chiral condensate susceptibiligy as a function ot at T = 1.733,c= 0.3, andm= 0. The
solid line shows the fit wittk = 0.1866,F = 0.0992 anda = 3.0. The dashed line shows the same curve
with a = 0, and the dotted line shows the infinite volume lid#t/ 4.

and the volume such thatis fixed and small but this is tedious. For example even-atl for

L = 48 the quark mass should be as small as®1®incen? is involved in a probability, double
precision arithmetic may become an issue. Thus, here wesel@viother method. To understand
our approach we expand the partition function in powers efgtark mass

Z=Z0+MZo+mZs+ ... (3.5)

whereZ, is obtained from configurations with monomers. In this expansion we neglect thee
contribution to instanton weights as they will not conttdun thee regime. Similarly, Ieva(m
anch(n> denote the values of the current susceptibilities when cetpin then monomer sector.
Expanding observables in the various monomer sectordawslthat

¢ :Yi<°)+mz{Yi(2) —Yi(o)}%-i-... (3.6)
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wherei = v, c. Following the analysis in [4], we conclude that

@ 2F2 361 b
W == <1+ SFLE T LR +> (3.7a)
2 /
v _ % <1+ (Fbl\_/)4—|—..> (3.7b)

Notice thath(z) + Yv(z) because of explicit chiral symmetry breaking that is introgld by the
presence of the monomers.
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Figure 3: Plot of Yc(2> ande(2>, evaluated in the two monomer sector as a functioh af T = 1.733,
c=0.3andm= 0. The solid lines are fits as discussed in the text.

We used the fixed monomer update to comp{é@ andY\,(z). Fig.(3) shows our results as
a function ofL. We fixedF = 0.0992 and fit the data to Eq.(3.7). We foubd= 4.1(1) with
a x?/DOF = 1.1, andb, = 4.2(1) with a x2/DOF = 2.1. Although the results again appear
consistent with the predictions at largie the large values for the constarsand b, show that
more data with small errors fdr > 48 is needed to be sure we can be sensitive to the universal
predictions at(1/L?).

4. Conclusions and Future Work

We have illustrated a new approach to modeling the physipgoof inN; =2 QCD. We used
N; = 2 lattice QED in the strong coupling limit and have demortstiahat by using a mapping to
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dimer models we can explore the chiral limit very efficientlye have shown consistency with the
e-regime predictions of chiral perturbation theory. We hal& demonstrated that we can make
F < 1 by tuning a fictitious temperature so one approaches a demoler phase transition. This
tuning helps remove lattice artifacts and approachrdi nuumt-like theory.

We are currently performing calculations in tlperegime and plan to test the predictions of
chiral perturbation theory in this regime. We plan to stutlg range ofm from which chiral
perturbation theory will allow us to computeandz in the p-regime and to check if this analysis
is consistent with the results we presented here fogthegime. Since our algorithm allows us to
compute the chiral values directly we have the ability to endkect comparisions and thus check
the reliability of chiral extrapolations found in the lisgure.
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