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To model pions of two-flavor QCD we construct a lattice field theory involving two flavors of

staggered quarks interacting strongly withU(1) gauge fields. In the massless quark limit, this

theory has anSUL(2)× SUR(2)×UA(1) symmetry. By introducing a four-fermion term we can

break theUA(1) symmetry and thus incorporate the physics of the QCD anomaly. We can also

tune the pion decay constantF, to be small compared to the lattice cutoff by starting with an extra

fictitious dimension, thus allowing us to model low energy pion physics in a setting similar to

lattice QCD from first principles. However, unlike lattice QCD, a major advantage of our model

is that we can easily design efficient algorithms (Directed Path Algorithms) to compute a variety

of quantities in the chiral limit. Here we show that the modelis consistent with the predictions of

chiral perturbation theory in theε-regime.
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1. Introduction

Current lattice calculations are typically carried out at unphysically large quark masses, and
chiral perturbation theory is used to extrapolate to realistic quark masses. A study of the range of
quark masses over which the chiral expansion may be safely applied is thus useful.

One way to check the reliability of chiral extrapolations isto verify them in different regimes.
There are many such regimes depending on the values of the pion masses and the physical box
sizes, but the most popular examples are thep-regime and theε-regime. Interestingly, in all the
regimes the extrapolation formulas depend on the same low energy constants that describe the
chiral Lagrangian. Hence if the data from a lattice calculation can be fit in both the regimes with
the same low energy constants one would gain more confidence in the extrapolations.

Studies of QCD-like models may teach us more about chiral extrapolations. Motivated by this,
we study a lattice field theory model of pions in two-flavor QCDwhich we previously introduced
[1, 2, 3, 4]. This model is particularly attractive since it is very much like QCD in its formulation
but we are easily able to design very efficient algorithms to study a variety of quark masses.

2. Model, Algorithm, and Observables

The Euclidean space action of our model is (note that the usual factor of 1
2 in the fermion

kinetic term has been absorbed into the fields):

S = −∑
x

d+1

∑
µ=1

ηµ ,x

[

eiφµ ,xψxψx+µ̂ −e−iφµ ,xψx+µ̂ψx

]

−∑
x

[

mψxψx +
c̃
2

(

ψxψx

)2]

, (2.1)

wherex denotes a lattice site on ad + 1 dimensional hyper-cubic latticeLt ×Ld. Lt is a fictitious
time direction and will be used to tuneF, the non-perturbative physical mass scale, to be small
compared the lattice cutoff.Ld is the usual Euclidean space-time box.ψx andψx are two compo-
nent Grassmann fields that represent the two quark(u,d) flavors of massm, andφµ ,x is the compact
U(1) gauge field through which the quarks interact.µ = 1,2, ...,d,d + 1 runs over thed + 1 di-
rections and theµ = 1 direction denotes the fictitious temperature, while the remaining directions
represent Euclidean space-time. The staggered fermion phase factorsηµ ,x obey: η2

1,x = T and
η2

i,x = 1 for i = 2,3, ...,d + 1. T controls the fictitious temperature and will be used to tune to the
continuum limit (F ≪ 1). The coupling ˜c will set the strength of the anomaly.

When c̃,m = 0, the action exhibits a globalSUL(2)× SUR(2)×UA(1) symmetry likeN f = 2
QCD. The partition function of this model is equivalent to that of a classical statistical mechanics
model involving configurations made up of gauge invariant objects, namely monomers, dimers,
pion loops, and instantons [5]. These configurations and therelated constraints are discussed in
more detail in [4].

To study this model, we have designed a Directed Loop Algorithm [6]. The algorithm and the
many observables such as two point correlation functions, susceptibilities, and current susceptibil-
ities, are discussed in [4].
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3. Chiral Perturbation theory in the ε-regime

In the phase of broken chiral symmetry and large anomaly, thelow energy physics of our
model is described by the Euclidean chiral Lagrangian

L =
F2

4
tr
(

∂µU†∂µU
)

−mΣtr
(

U +U†
)

(3.1)

whereF is the chiral pion decay constant,Σ is the chiral condensate, andU ∈ SU(2) is the pion
field. Theε- regime is the limit whereL, the linear size of the four dimensional hypercube, is large
such thatFL ≫ 1 but mΣL4 is fixed. Many observables in theε-regime have been computed and
can be found in the literature. For example the behavior of the condensate susceptibilityχσ as a
function ofL at m = 0 was obtained in [7] for theO(N) model. TheN = 4 result is

χσ =
Σ2L4

4

[

1+
3β1

(FL)2 +
a

(FL)4 + ...

]

(3.2)

Further, the chiral and vector current susceptibilitiesYc andYv (respectively) were obtained in [8]

Yc =
F2

2

(

{

1+
β1

(FL)2 +
a′

(FL)4 + ...

}

+
u2

24

{

1+
3β1

(FL)2 +
bc

(FL)4 + ...

}

+O(u4)

)

(3.3a)

Yv =
F2

2

(

{

1+
β1

(FL)2 +
a′

(FL)4 + ...

}

−
u2

24

{

1+
3β1

(FL)2 +
bv

(FL)4 + ...

}

+O(u4)

)

(3.3b)

for smallu = ΣmL4[1+3β1/(2(FL)2)]. In these relationsβ1 = 0.14046 is the shape coefficient and
a,a′ bc,bv are constants that depend on higher order low energy constants. AlsoYc = Yv at u = 0
reflects the chiral symmetry of the theory.

We show that the calculations in our model are consistent with Eqs.(3.2) and (3.3). We choose
c = 0.3 andT = 1.733 with fixedLt = 2. These parameters are chosen to ensure that chiral symme-
try is spontaneously broken and the anomalous pion mass (Mη) is about 1 in lattice units. At this
T , F ∼ 0.1 in lattice units, which should make our results less sensitive to lattice artifacts. Fig.(1)
shows data forYc as a function ofL for m = 0. The solid lines are fits to Eq.(3.3). The fits are very
good if we allowa′ 6= 0 and fit to lattice sizes aboveL∼ 24. We can then extractF = 0.0992(1) and
a′ = 2.7(1) with a χ2/DOF = 0.8. However, as shown in the figure, this means that settinga′ = 0,
i.e.. using only the leading correction in the chiral expansion, will not be a good approximation for
L < 48. This is a result of the smallness ofa′/β1. In other words, although our data is consistent
with the Eq.(3.3), unfortunately we are not sensitive to theuniversal corrections at orderO(1/L2).

We now consider the condensate susceptibilityχσ . Fig(2) is a plotχσ/L4 as a function ofL.
The solid line is a fit to the data using the Eq.(3.2) whereF = 0.0992 is fixed and only data for
L > 20 is used in the fit. We findΣ = 0.1862(2), a = 3.0(2) with a χ2/DOF = 1.3. Again, the
universal correction at orderO(1/L2) is small compared to the next order non-universal correction
for L < 48.

3



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
7
)
0
6
7

Pion physics in the strong coupling limit: A poor man’s QCD? D. J. Cecile

8 16 32 48 64
L

0.005

0.01

0.015

Yc

20 24 32 40 48 64
L

0.005

0.0055

0.006

Yc

Figure 1: Vector current susceptibilityYC as a function ofL at T = 1.733,c = 0.3 andm = 0 [YC = YV ].
The solid line shows the fit withF = 0.0992 anda′ = 2.7. The dashed line shows the same curve but with
a′ = 0, and the dotted line shows the infinite volume limitF2/2.

We have neglected the log(L) corrections that arise at the order 1/(FL)4 [9]. The reason is as
follows: Consider the chiral condensate susceptibility inEq.(3.2). Using the results of [7, 9, 10],
we can obtain the logarithmic corrections to Eq. (3.2). In particular it follows that

χσ =
Σ2L4

4

[

1+
3β1

F2L2 +
1

F4L4

{

α +
15

16π2 (logFL)
}

+ O
( 1

F5L5

)

]

(3.4)

where nowα = (3β 2
1 + 15β2)/2+ 3[log(ΛM/F) + 4log(ΛΣ/F)]/16π2 and β2 = −0.020305 is

another shape coefficient. The mass scalesΛM ,ΛΣ represent the non-universal information of the
model and are defined in [7]. AssumingL1 = 20 is the smallest lattice size andL2 = 64 is the largest
lattice size we use in the fits, the change in the logarithmic correction term 15log(L2/L1)/(16π2)∼

0.1 is within errors of the constanta = 3.0(2) obtained above by fitting theχπ data to Eq.(3.2).
Thus, our errors are still large and we are not yet sensitive to the logarithmic corrections. Interest-
ingly, since 15log(FL)/(16π2) is much smaller thana in the region of our fits, we estimate that
a ∼ 3[log(ΛM/F)+4log(ΛΣ/F)]/(16π2), which means that[log(ΛM/F)+4log(ΛΣ/F)] ∼ 150 is
unnaturally large, and the factor116π2 is essential to keep the coefficient of 1/(FL)4 of order 1. In
other words factors like 1

16π2 cannot always be assumed to be small since they can be multiplied by
large numbers.

Having confirmed that the results are consistent with Eq.(3.3) whenu = 0, we can also check
that for consistentency with Eq.(3.3) at orderu2. A way to do this is to tune the quark mass
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Figure 2: Chiral condensate susceptibilityχσ as a function ofL at T = 1.733,c = 0.3, andm = 0. The
solid line shows the fit withΣ = 0.1866,F = 0.0992 anda = 3.0. The dashed line shows the same curve
with a = 0, and the dotted line shows the infinite volume limitΣ2/4.

and the volume such thatu is fixed and small but this is tedious. For example even atu = 1 for
L = 48 the quark mass should be as small as 10−6. Sincem2 is involved in a probability, double
precision arithmetic may become an issue. Thus, here we devise another method. To understand
our approach we expand the partition function in powers of the quark mass

Z = Z0 + m2Z2 + m4Z4+ .... (3.5)

whereZn is obtained from configurations withn monomers. In this expansion we neglect them2

contribution to instanton weights as they will not contribute in theε regime. Similarly, letY (n)
v

andY (n)
c denote the values of the current susceptibilities when computed in then monomer sector.

Expanding observables in the various monomer sectors it follows that

Yi = Y (0)
i + m2

{

Y (2)
i −Y (0)

i

}

Z2

Z0
+ ... (3.6)
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wherei = v,c. Following the analysis in [4], we conclude that

Y (2)
c =

2F2

3

(

1+
3β1

2(FL)2 +
b′c

(FL)4 + ...

)

(3.7a)

Y (2)
v =

F2

3

(

1+
b′v

(FL)4 + ..

)

(3.7b)

Notice thatY (2)
c 6= Y (2)

v because of explicit chiral symmetry breaking that is introduced by the
presence of the monomers.
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Figure 3: Plot of Y (2)
c andY (2)

v , evaluated in the two monomer sector as a function ofL at T = 1.733,
c = 0.3 andm = 0. The solid lines are fits as discussed in the text.

We used the fixed monomer update to computeY (2)
c andY (2)

v . Fig.(3) shows our results as
a function ofL. We fixedF = 0.0992 and fit the data to Eq.(3.7). We foundb′c = 4.1(1) with
a χ2/DOF = 1.1, andb′v = 4.2(1) with a χ2/DOF = 2.1. Although the results again appear
consistent with the predictions at largeL, the large values for the constantsb′c andb′v show that
more data with small errors forL > 48 is needed to be sure we can be sensitive to the universal
predictions atO(1/L2).

4. Conclusions and Future Work

We have illustrated a new approach to modeling the physics ofpions inN f = 2 QCD. We used
N f = 2 lattice QED in the strong coupling limit and have demonstrated that by using a mapping to
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dimer models we can explore the chiral limit very efficiently. We have shown consistency with the
ε-regime predictions of chiral perturbation theory. We havealso demonstrated that we can make
F ≪ 1 by tuning a fictitious temperature so one approaches a second order phase transition. This
tuning helps remove lattice artifacts and approach acontinuum-like theory.

We are currently performing calculations in thep-regime and plan to test the predictions of
chiral perturbation theory in this regime. We plan to study the range ofm from which chiral
perturbation theory will allow us to computeF andΣ in the p-regime and to check if this analysis
is consistent with the results we presented here for theε-regime. Since our algorithm allows us to
compute the chiral values directly we have the ability to make direct comparisions and thus check
the reliability of chiral extrapolations found in the literature.
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