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1. The project, in a nutshell

Two coupling constants, F and Σ, parameterize the leading-order chiral effective Lagrangian

�
eff � F2

4
Tr � ∂µU∂ µU† ��� Σ

2
Tr � ��� U 	 U† ��
� (1.1)

A long-standing problem for lattice simulations is to determine them directly from QCD. Typically,
this is done by fitting a correlation function to some theoretical formula parameterized by F , Σ and
mπ . Usually one has to measure a correlation function of operators at long distance to be sensitive
to these parameters. This makes the measurement expensive. In addition, the simulations do
not give F and Σ directly; instead, they give the mass-dependent decay constant and condensate.
which depend, through the standard formulas of chiral perturbation theory, on F and Σ and on the
coefficients of higher-order terms in

�
. So the determination of F and Σ from the lattice is rather

indirect.
A series of papers by Akemann, Damgaard, Heller, Osborn, Splittorf, Svetitsky, and Toublan[2,

3, 4, 5] provide an alternative path toward a direct measurement of F and Σ. This is done via the
properties of eigenvalues of the Dirac operator, from simulations in the epsilon regime (mπ L � 1
but ΛL � 1 for box length L and Λ any nonperturbative parameter of QCD except mπ ). The par-
ticular implementation we used is that of Ref. [5]. An imaginary isospin chemical potential µ is
coupled to a doublet of quenched quarks. The correlator of the eigenvalues from an ordinary µ � 0
simulation, λi, with the quenched eigenvalues, λ j,

ρ � 2 � conn� 1 � 1 � � x � y � ��� ∑
i

δ � x � λi
� ∑

j
δ � y � λ j

����� � ∑
i

δ � x � λi
��� � ∑

j
δ � y � λ j

��� (1.2)

is a function of Σ and F which is given by Random Matrix Theory (RMT). The particular formula
is given by Eq. (3.49) of Ref. [5], in terms of the usual rescaled variables λ iΣV , λ jΣV , the rescaled
mass mqΣV , and the rescaled isospin chemical potential δ � µF � V . V is the volume.

To combine data sets, we integrate the data. Refs. [2] and [3] suggest using

C � x � ζmax
� ��� ζmax

0
dyρ � x 	 y � y ��� (1.3)

We did one more integral:

I � X � ζmax
� ��� X� ζmax

C � x � ζmax
� dx � (1.4)

The first integral C � x � shows a spike at x � 0 whose width goes roughly as δ 2. Then I � X � will show
a sharp step at X � 0.

In our numerical simulations we used overlap fermions[6, 7]. They preserve the full SU � N f
� �

SU � N f
� chiral symmetry (including the anomalous singlet current and the index theorem). Our

data set uses a lattice volume of 124 points. The lattice spacing a, as determined from the Sommer
parameter r0 [8], is r0 ! a � 3 � 71 � 5 � . The pseudoscalar mass is amπ � 0 � 329 � 3 � . This is not in
the epsilon regime, but experience shows RMT is robust enough to work well outside the epsilon
regime, and we are making a pilot study. In our conversions to physical units we use r0 � 0 � 5 fm.
Details of our action are to be found in Refs. [9, 10, 11]. The one new ingredient is the gauge
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Figure 1: Data (squares) and fit from � ν ��� 1. A cut ζmax � 0 � 07 is enforced. The best fit values for this
bootstrap sample are ΣLV � 147 and aFL � 0 � 071.

Figure 2: Best-fit values of aFL, varying ζmax.

connection: we used the differentiable hypercubic smeared link of Ref. [12]. We collected about
400 thermalized HMC trajectories of unit length and analyzed 30 lattices in topological charge
sector ν � 0 and 75 � ν � � 1 ones. To do the fitting, we took bootstrap averages of the integrated
data.

We reproduce two figures from the paper: Fig. 1 shows an example of a fit from one of our
bootstraps. Fig. 2 shows the dependence of fits on ζmax. These fits all include only the three lowest
(but nonzero) eigenvalues in a topological sector. Smaller ζmax means that less data is included in
the fit; larger ζmax means that more eigenmodes are needed to saturate the correlation function. It
appears that results for this data set do not depend on the choice of ζmax.

In finite volume, the eigenvalue correlator is not a direct function of Σ and F , but of the
quantities ΣL and FL which reflect the finite volume. For the condensate, this dependence is known:
ΣL � ρΣΣ where

ρΣ � 1 	 CΣ
1

F2 ∆ � 0 � 	 � � � (1.5)
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with ∆ � 0 � the contribution to the tadpole graph (propagator at zero separation) from finite-volume
image terms. In the epsilon regime, ∆ � 0 � � � D ! � V and D depends on the geometry[13]. (It is
0.1405 for hypercubes.) For N f flavors, CΣ � � � N2

f
� 1 � ! N f .

A second complication for the condensate is that Σ is scheme-dependent. We perform the
conversion from lattice regularization the MS using a measurement of the matching factor from the
RI-MOM scheme as an intermediary. Correcting for finite volume and converting schemes, we find

r0Σ � MS � µ � 2 GeV � 1 � 3 � 0 � 594 � 13 � (1.6)

or � Σ � MS � µ � 2 GeV � � 1 � 3 � 234 � 4 � MeV (1.7)

This is consistent with an analysis of cumulants of eigenvalues, and with other determinations of
the N f � 2 condensate[14, 15, 16, 17].

F is also expected to be volume dependent, and the correction is also likely to be of the form
FL � ρFF with

ρF � 1 	 CF
1

F2 ∆ � 0 � 	 � � � (1.8)

Unfortunately, there is no calculation (yet) of CF . We found

r0FL � 0 � 255 � 13 � (1.9)

or with r0 � 0 � 5 fm,
FL � 101 � 6 � MeV � (1.10)

We expect that CF is a number on the order 1-2, probably N f dependent; that would be sufficient to
lower F from FL by 20 per cent or so and bring it in line with phenomenological estimates of about
86 MeV [18, 19].

So at this point the calculation is incomplete: one needs the finite volume correction. However,
the size of the error is very interesting: while typical large scale simulations can get fπ to a fraction
of a per cent, F is harder: for example, MILC[20] quotes (their Table IV, Fit A, our conversion)
r1F � 0 � 131 � 10 � or F � 82 � 6 � MeV, compared to their number for fπ , which has a 0.3 per cent
error [21]). Our quite competitive error on F , with the expenditure of a tiny amount of computer
resources, is what makes this calculation worth repeating.

2. Questions from the conference

� You used fat links. Aren’t you worried they will mess something up?

On the contrary. Everyone who has tried using fat links for light fermions has only good things
to say about them, from the point of view of perturbation theory, exceptional configurations (for
Wilson fermions), taste symmetry restoration (for staggered fermions) and efficiency in computing
the overlap action. The one exception was MILC, who long ago[22] tried to use APE smearing
with 0 � 45 � 10 (!!!) smearing steps in a calculation of the properties of heavy-light mesons. This
gave big scaling violations in fD: too much smearing decoupled the quarks from the short distance
part of the one gluon exchange potential. We are using hypercubic smearing. This is even more
local than AsqTad – in fact, you cannot be more local. Readers might remember that the Alpha
collaboration studied static-light properties with hypercubic links, with great success [23].

4



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
7
)
0
6
9

The complete lowest order chiral Lagrangian from a little box Thomas DeGrand

� Why did you measure F? Isn’t fπ more interesting?

Actually, what is interesting is the ratio fK ! fπ , which can be used to determine the Cabibbo
angle[24]. But then you have to ask, how do you measure fπ ? This is not done with simulations
at the physical quark masses; instead, one performs simulations at any light quark masses (heavy
enough to be cheaply simulated, light enough to be in the region of validity of chiral perturbation
theory). Then the mass-dependence of parameters is fit to a chiral perturbation theory formula.
The uncertainties between F , Σ and the higher order terms cancel at the input quark mass values,
for the particular observables which are being fit. However, for other observables (predictions) the
larger error on F can be problematic. That’s why this particular measurement scheme – provided
the finite volume correction can be controlled – is so interesting.

� Isn’t there a problem using individual eigenvalues to determine F and Σ, rather than using
the complete spectral density ρ � ζ � ?

We don’t think so (and anyway, we used formulas which involved integrated eigenvalue distri-
butions). Ref. [25] showed that the spectral density and its moments, and even eigenvalues, renor-
malize pretty much as one would naively expect. Notice that at low values of ζ , ρ � ζ � coincides
with the distribution of the lowest eigenvalue p1 � ζ � (because that is all that there is)! Akemann
and Damgaard [26] have derived exact expression relating the individual eigenvalue distributions
to integrals over the eigenvalue density and all the spectral correlators. If these are true, it is hard to
imagine that something different would happen to the individual eigenvalue distributions and to the
integrated ones. (They are also working on a single-eigenvalue version of the correlator we studied
here[27].)

� I don’t have a chiral action. How much of this project could I do?

Doing exactly what we did with fermions which do not recognize the index theorem could be
tricky, since you have to work in sectors of fixed topology, and you have to project the nonzero
eigenvalues, which are complex for a generic non-chiral Wilson-type fermion, onto the imaginary
axis. This might be more trouble than it is worth. You might try looking at quantities in the
epsilon regime which average over topology; the original papers by Hansen and Leutwyler[28]
give formulas for the pseudoscalar and axial correlators, which can also be analyzed to get Σ and
F .

� Tell me more about the “Primme” package.

The “Primme” package of McCombs and Stathopolous[29] is a library for computing eigen-
values of Hermitian matrices. (For overlap fermions, that is all you need.) It implements a variety
of algorithms, preconditioning and optimization options which can be used via a very convenient
interface. It is about a factor of three faster than our version of the Bunk-Kalkreuter-Simma [30]
Conjugate Gradient algorithm.

� Can you suggest a good book about lattice QCD?

Yes [31].
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