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1. Introduction

Determination of the leading-order parameters of chiral perturbation theory (ChPT),i.e. the
chiral condensateΣ and the pion decay constantF , is the first goal for lattice QCD in establishing
the link between QCD and ChPT. This is not an easy task, because the large volume limit must be
taken before taking the chiral limit. Both limits require enormous computational cost.

Recently, another approach is getting popular, that is the lattice calculation in theε-regime.
Here, one reduces the quark mass very close to the chiral limit at a fixed volumeV. Of particular
interest is the region where the pion correlation length, or the inverse pion mass1/mπ , overshoots
the size of the boxL. In this regime, the finite volume effect becomes prominent, but it can be
treated in a systematic way within ChPT as an expansion in a new parameterε [1, 2, 3], which
has the scalemπ/Λcut ∼ p2/Λ2

cut ∼ ε2, wherep denotes the pion momentum andΛcut is the cutoff
of ChPT. Zero-momentum mode of pion is treated non-perturbatively at the leading order of the
ε-expansion. With this expansion, precise predictions for the volume and topological charge de-
pendences of the quark condensate, meson correlators,etc. are obtained in terms of the low-energy
constants in the infinite volume.

Simulating lattice QCD in theε-regime has potential advantages. Computational cost can be
kept manageable by staying in a small box, when reducing the quark mass until the chiral extrap-
olation becomes unnecessary. The remarkable topological charge and quark mass dependences of
the meson correlation functions, for instance, in theε-regime are helpful to identify the correspon-
dence between QCD and ChPT. These nice properties have already been exploited in the quenched
QCD studies [4]. In such works the overlap-Dirac operator [5] is used, since any tiny violation of
chiral symmetry may be amplified in theε-regime.

A recent work of the JLQCD collaboration [6] extended the study in theε-regime to un-
quenched QCD. (See also [7] for smaller scale works.) On a163×32 lattice at the lattice spacing
a∼ 0.11fm (determined fromr0 ∼ 0.49fm) we have generated 460 configurations with two-flavor
dynamical overlap quarks and Iwasaki gauge action. We carried out a simulation at an extremely
light sea quark massm∼ 3 MeV, which is within theε-regime. Comparing the Dirac spectrum with
the predictions of chiral Random Matrix Theory, we extracted the value ofΣ at the leading order
of theε-expansion asΣMS(2GeV) = [251(7)(11) MeV]3, where the second error is an estimate of
the systematic error due to the NLO effects of theε-expansion.

In this work, we use the same configurations in theε-regime to calculate the meson correlators
in various channels. Analytic predictions of ChPT for various channels are known to the next-to-
leading order of theε-expansion [9, 10]. Their extensions to the partially quenched ChPT have
also become available recently [11]. We compare these ChPT predictions with the lattice data to
extractΣ andF to the NLO accuracy.

2. (Partially quenched) chiral perturbation theory in the ε-regime at fixed topology

First, we briefly review the results for the meson correlators calculated within (partially quen
-ched) chiral perturbation theory. See [9, 10, 11] for details. Here we considerNv valence quarks
with a massmv andNf = 2 sea quarks with a massms, both in theε-regime.
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As a fundamental building block of this section, let us define the partially quenched zero-mode
partition function which consists of two physical quarks (of which mass isms) and one valence
quark (withmv) and 1 bosonic quark (withmb), at a fixed topologyν.

Z PQ
ν (µb|µv,µs) ≡ 1

(µ2
s −µ2

v )2 det




Kν(µb) Iν(µv) Iν(µs) Iν−1(µs)/µs

−µbKν+1(µb) µvIν+1(µv) µsIν+1(µs) Iν(µs)
µ2

bKν+2(µb) µ2
v Iν+2(µv) µ2

s Iν+2(µs) µsIν+1(µs)
−µ3

bKν+3(µb) µ3
v Iν+3(µv) µ3

s Iν+3(µs) µ2
s Iν+2(µs)


 ,

(2.1)

whereµb = mbΣV, µv = mvΣV andµs = msΣV. Kν ’s andIν ’s are the modified Bessel functions.
Note that in the limitµb → µv, it reproduces theNf = 2 full theory partition function

Z PQ
ν (µv|µv,µs) = Z full

ν (µs) ≡ det

(
Iν(µs) Iν−1(µs)/µs

µsIν+1(µs) Iν(µs)

)
. (2.2)

The partially quenched chiral condensate at finiteV andν is defined by

ΣPQ
ν (µv,µs)

Σ
≡ − lim

µb→µv

∂
∂ µb

lnZ PQ
ν (µb|µv,µs). (2.3)

It is not difficult to see that in theµv → µs limit, the partially quenched condensate becomes the one

in the full theory,ΣPQ
ν (µs,µs)

Σ = Σfull
ν (µs)

Σ ≡ 1
2

∂
∂ µs

lnZ full
ν (µs). In the following, we also use the double

derivative of the condensate, defined by

∆ΣPQ
ν (µv,µs)

Σ
≡

limµb→µv ∂µb∂µvZ
PQ

ν (µb|µv,µs)
Z full

ν (µs)
. (2.4)

First, we present the correlation functions of the flavored pseudo-scalar and scalar operators,
Pa(x) = q̄(x)τaγ5q(x) andSa(x) = q̄(x)τaq(x), whereτa denotes the generator ofSU(Nv) group
which the valence quark fieldq(x) belongs to. For these correlators, the partially quenched expres-
sion at fixed topology is known toO(ε2) (no sum overa) [11]:

CP(t) ≡
∫

d3x〈Pa(x)Pa(0)〉 =
1
2

L3Σ2
eff

µeff
v

ΣPQ
ν (µeff

v ,µeff
s )

Σ
− 1

2

[
2Σ2

F2

∆ΣPQ
ν (µv,µs)

Σ

+
Σ2

F2

∂µvΣ
PQ
ν (µv,µs)

Σ
− Σ2

F2

4
µ2

v −µ2
s

(
µvΣPQ

ν (µv,µs)
Σ

− µsΣfull
ν (µs)
Σ

)]
h1(t/T), (2.5)

CS(t) ≡
∫

d3x〈Sa(x)Sa(0)〉 =
L3Σ2

eff

2
∂µvΣ

PQ
ν (µeff

v ,µeff
s )

Σ
− 1

2

[
2Σ2

F2

ν2

µ2
v

+
Σ2

F2

1
µv

ΣPQ
ν (µv,µs)

Σ
− Σ2

F2

4
µ2

v −µ2
s

(
µvΣPQ

ν (µv,µs)
Σ

− µsΣfull
ν (µs)
Σ

)]
h1(t/T), (2.6)

whereµeff
i = miΣeffV, and thet dependence of correlators is represented by a functionh1(t/T) ≡

T
[
(t/T −1/2)2−1/12

]
/2. Σ receives one-loop correction asΣeff = Σ

(
1+3β1/2F2V1/2

)
, where

β1 is the so-called shape coefficient. In our numerical study,β1 = 0.0836.
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Next, consider the flavored axial-vector and vector operatorsAa
0(x) = q̄(x)τaγ0γ5q(x) and

Va
0 (x) = q̄(x)τaγ0q(x). Their correlators atO(ε2) in theNf = 2 ChPT are (see [10] for details)

CA(t) ≡
∫

d3x〈Aa
0(x)A

a
0(0)〉 = −F2

2T

{
J 0

+ +
2

F2

(
β1

V1/2
J 0

+− T2

V
k00J

0
−

)

+
4µs

F2

Σfull
ν (µs)

Σ
T2

V
h1(t/T)

}
, (2.7)

CV(t) ≡
∫

d3x〈Va
0 (x)Va

0 (0)〉 = −F2

2T

{
J 0

− +
2

F2

(
β1

V1/2
J 0

−− T2

V
k00J

0
+

)}
, (2.8)

wherek00 is another numerical factor depending on the shape of the box (in our case,k00 =
0.08331). J 0

± are defined by

J 0
± ≡ 1

3

(
3∓1±2

[
∂µsΣfull

ν (µeff
s )

Σ
+2

(
Σfull

ν (µeff
s )

Σ

)2

+
1

µeff
s

Σfull
ν (µeff

s )
Σ

−2
ν2

(µeff
s )2

])
,(2.9)

Note thatCP(t) andCS(t) are sensitive toΣ andF enters only atO(ε2). ForCA(t) andCV(t),
on the other hand,F appears in the leading term and thus can be extracted efficiently.

3. Lattice simulations

Here we summarize our numerical set up for the simulations. For other details, see [6]. Our
lattice size is163×32 and the lattice spacing is determined asa = 0.1111(24) fm from the heavy
quark potential assumingr0 = 0.49 fm. We use the overlap fermion [5], of which the Dirac operator
with a quark massm is given by

D(m) =
(

m0 +
m
2

)
+

(
m0−

m
2

)
γ5sgn[Hw(−m0)], (3.1)

whereHW(−m0) = γ5DW(−m0) denotes the standard Hermitian Wilson-Dirac operator. We choose
m0 = 1.6 throughout this work. (Here and in the following the mass parameters are given in the
lattice unit, unless otherwise stated.) For the gauge action, we use the Iwasaki action atβ = 2.35
together with an additional determinant factor corresponding to Wilson fermions and associated
twisted-mass ghosts [8], which forbids the topology changes along the Monte Carlo updates. In
this work, topological charge is fixed toν = 0. We use the hybrid Monte Carlo (HMC) algorithm.
The sign function in (3.1) is approximated by a rational function with Zolotarev’s coefficients after
projecting out a few lowest-lying eigenmodes.

In this work, we focus on the run at the lightest sea quark massm= 0.002, which corresponds
to ∼ 3 MeV in the physical unit and the system is well within theε-regime. We accumulated
4,600 trajectories after discarding 400 trajectories for thermalization. At every 10 trajectories, we
calculated the meson correlators in various channels. We take four values of valence quark mass,
m = 0.0005, 0.001, 0.002, and 0.003 (1–4 MeV). The inversion of the Dirac operator is performed
simultaneously for all the valence quark masses using the multimass solver.

For the meson correlators, the purely low-mode contribution (both quark and anti-quark propa-
gators are represented by the low-lying eigenmodes) is replaced by the low-mode averaged (LMA)
one,i.e. the source point is averaged over all lattice sites. We find that LMA with 100 eigenmodes
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improves the statistical signal substantially for the pseudo-scalar and scalar correlators while the
improvement is marginal for the axial-vector and vector correlators.

The jackknife bin-size is chosen as 20, with which the statistical error saturates.

4. Numerical results

Now we present the numerical results.
For the axial current we use the local operatorAa

0(x), which receives finite renormalization.
We calculated the renormalization factor using the RI/MOM scheme and obtainedZA = 1.3513(13).
In the following, we neglect this tiny statistical error forZA.

Fig. 1 (left panel) shows the data for the axial-vector correlator atmv = ms = 0.002. A
two-parameter fit to (2.7) works well (χ2/d.o.f∼ 0.01) for the low-mode averaged data (filled
squares) as shown by a blue curve. The fitting range ist ∈ [12,20]. From this fit we obtain
Σ ∼ [260(32) MeV]3 andF ∼ 90(6) MeV. The statistical error inΣ is large (∼ 30%) becauseΣ
appears only atO(ε2), while F is determined to a good precision.

Next, let us look at the pseudo-scalar channel atmv = ms = 0.002. Using F obtained via
the axial-vector correlator as an input, we fit the pseudo-scalar channel with (2.5) and obtainΣ
with much better precision. Fig.1 (right panel) shows the fit curve with a fit ranget ∈ [12,20]
(χ2/d.o.f= 0.07). A two-parameter fit withF as another free parameter does not work because the
sensitivity toF is too weak.

To obtain the best result we perform a simultaneous fit to bothPaPa andAa
0Aa

0 correlators and
obtainΣ = [227.6(3.7) MeV]3 andF = 87.3(5.6) MeV (or

√
2F = 123.5(7.9) MeV), where the

statistical error ina is also taken into account. Here the fit range ist ∈ [12,20] andχ2/d.o.f= 0.02.
Multiplying the renormalization factor calculated non-perturbatively through the RI/MOM scheme,
we obtained the renormalized condensateΣMS(2 GeV) = [239.8(4.0) MeV]3. This value is consis-
tent with our previous result obtained through the Dirac spectrumΣDirac = [251(7)(11) MeV]3.

Once the parametersΣ andF are determined, there is no additional free parameters at the
given order of theε-expansion, and therefore the comparison provides a stringent test of the lattice
data and/or theε-expansion. For instance, the lattice data for the scalar channel is shown in Fig.2
(left panel). The curve in the plot isnota fit to the data but a ChPT prediction (2.6). The agreement
is remarkable. Furthermore, we also test the consistency with the partially quenched data sets
(mv 6= ms) for the pseudo-scalar channel (Fig.2 (right panel)). The curves showing the ChPT
prediction without free parameters are perfectly consistent with the lattice data.

5. Discussions

We have compared the different channels (pseudo-scalar, scalar, axial-vector and vector), par-
tially quenched correlators with four different valence quark masses, and Dirac spectrum, and they
are all consistent with each other. For the change of the fitting range withintmin ∈ [10,15], both
Σ andF are quite stable (within 1%) with similar error-bars. For the finite volume correction, the
NLO in theε-expansion,i.e. O(ε2) ∼ p2 ∼ 1/L2, is taken into account within ChPT.

Still, we find some discrepancy in the pion decay constant with the preliminary result (F =
78(3)(1) MeV) obtained in thep-regime using the NNLO formula for the chiral extrapolation [12].

5



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
7
)
0
7
3

Meson correlators in theε-regime H. Fukaya

 0

 2e-05

 4e-05

 6e-05

 8e-05

 0.0001

 0  5  10  15  20  25  30

C
A
(t

)/
Z

2 A

t

with LMA ma=0.002
without LMA ma=0.002

ChPT (Σ=[260MeV]3, Fπ=89.5MeV.)

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0  5  10  15  20  25  30

C
P
(t

)

t

lattice ma=0.002
ChPT (Σ=[227MeV]3, Fπ=89.5MeV.)

Figure 1: Upper figure: the axial vector correlator in theε-regime. Filled square symbols denote the low-
mode averaged correlator while the crosses are not averaged. The solid curve shows the best fit yielding
Σ ∼ [260MeV]3 andF ∼ 90 MeV). Lower figure: the pseudo-scalar correlator. The solid curve shows the
best fit yieldingΣ ∼ [227MeV]3 (F = 89.5 MeV is given as an input).

(The p-regime simulation has been done at a slightly coarser lattice spacing,a∼ 0.12 fm, but we
do not expect substantial discretization effect by this small change ofa.) This may signal some un-
known source of systematic error, possibly the higher order contributions in either theε-expansion
or thep-expansion.

HF thanks P. H. Damgaard, T. DeGrand and P. Hasenfratz for fruitful discussions. Numeri-
cal simulations are performed on Hitachi SR11000 and IBM System Blue Gene Solution at High
Energy Accelerator Research Organization (KEK) under a support of its Large Scale Simulation
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Figure 2: The scalar (left) and the partially quenched pseudoscalar (right) correlators in theε-regime. The
solid curves represent the ChPT prediction withΣ = [227.6MeV]3 andF = 87.3MeV (No free parameter
left).
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19740160).
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