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1. Introduction

The main target of lattice studies of the Higgs-Yukawa seofathe electroweak standard
model is the non-perturbative determination of thelependence of the upper and lower bounds
of the Higgs boson mass [1, 2] as well as its decay propestibere/\ denotes the cut-off of the
theory. There are two main developments which warrant torrgider these questions: first, with
the advent of the LHC, we are to expect that properties of tdwedard model Higgs boson, such
as the mass and the decay width, will be revealed experithen@econd, there is, in contrast
to the situation of earlier investigations of lattice Higgskawa models [3, 4, 5, 6], a consistent
formulation of an Higgs-Yukawa model with an exact lattideral symmetry [7] based on the
Ginsparg-Wilson relation [8], which allows to establisha#tice version of chiral symmetry while
lifting the unwanted fermion doublers at the same time.

Before addressing the questions of the Higgs mass bounddemay properties, we started
with an investigation of the phase structure of the modeldento obtain first information about
the region of the (bare) couplings in parameter space whengt@al simulations of phenomeno-
logical interest should be performed.

In the present paper we basically summarize some of the mstrtant results of our work
on the model’s phase structure, which we have studied acellytin the largeN; -limit for small as
well as for large values of the Yukawa coupling constant @ numerically by means of HMC-
simulations [10]. Finally, we give a brief outlook towardsnse first and very preliminary results
on the upper Higgs boson mass obtained at one selectedfai-of

2. Themodd and itsnumerical treatment

The model, we consider here, is a four-dimensional, clgimallariantSU(2),. x SU(2)g Higgs-
Yukawa model discretized on a finite lattice witHattice sites per dimension. The model contains
one four-component, real Higgs fie®elandN; fermion doublets represented by eight-component
spinorsy®, ¢V i = 1,...,N; with the total action being decomposed into the Higgs acBign
and the fermion actios. It should be stressed here thmat gauge fieldsre included within this
model.

The fermion actior$: is based on the Neuberger overlap opera6? [11] and can be written
as

Nt
i 1 i (1-w) (1+)
_ (i) | glov) . (ov) () - o
S = i:E ] [@ +ynB (1 > 9 >] ¢, Bam=1Inm > O+ 2 -

M
(2.1)

It describes the propagation of the fermion fields as wellhag tcoupling to the Higgs field
through the Yukawa coupling matr&, i, and the Yukawa coupling constay§. Here the Higgs
field @, was rewritten as a quaternionicx2 matrix ¢, = dJﬂ]l — idJ#} Tj, with T denoting the vector
of Pauli matrices, acting on tt&J(2) index of the fermionic doublets.

Note that in absence of gauge fields the Neuberger Dirac wpearan be trivially constructed
in momentum space, since for that case its eigenvali¢p), € = +1 for the allowed four-
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component momentp € & are explicitly known. This will be exploited in the numericaon-
struction of the overlap operator.
The model then obeys an exact, but lattice modified, chinalrsgtry according to

oY) =gy (1— %@@V)) PV, sp=2icp, 6PV =ic@Wy, d¢'=—2icp’ (2.2)

recovering the chiral symmetry in the continuum limit [7].
The lattice Higgs actiois is given by the usual lattice notation

So= KNS O [Pri+ O] + T OIPn+ AN S (OFPy—Ny)? (2.3)
N n 4]

with the only particularity that the fermion generation rhenNs appears in the quartic coupling
term which is a convenient convention for the laMyeanalysis. However, this version of the lattice
Higgs action is equivalent to the usual continuum notattdb].[

For the numerical treatment of the model we have implemeatédybrid-Monte-Carlo (HMC)
algorithm forevenvalues ofN¢ with N¢/2 complex pseudo-fermionic fields; according to the
HMC-Hamiltonian

Nf/2
H(®,&,w)) = So[®] + 5 E é+z wf [t (2.4)

whereé denotes the real momenta, conjugate to the Higgsdel8ince we focus here on checking
the validity of our analytical investigation of the phaseusture, which was determined in the large
N¢-limit, the restriction to evelN; does no harm. For the further details of this HMC algorithm we
refer the interested reader to Ref. [10].
The observables we will be using for exploring the phasectire are thenagnetization m
and thestaggered magnetization s
1

:li\é;%zz, :[%‘i“ —nF @,

and the corresponding susceptibilitigs = L*- [(m?) — (m)2] and xs = L*- [(s?) — (5)?] , where
(...) denotes the average over tihefield configurations generated in the Monte-Carlo process.

To locate the phase transition points, we decided to fit the fim the susceptibilitieXm, Xs
as a function oky according to the — partly phenomenologically motivated saén

y/2
Xms= AT’S' —2/v m,sl ms\ 2 ) (2.6)
L +A2.3(KN - Kcrit)

Nl=

(2.5)

whereAT*, AJ'S, andkg are the fitting parameters for the magnetic susceptibility staggered
susceptibility, respectively, and, y denote the critical exponents of ti@f-theory. HereA273
(A3 ) is actually meant to refer to two parameters, namigyA3) for kn < Ky (Kn < Kgy) and
A7 (A3) in the other case, such that the resulting curve is not sadés symmetric. The phase
transition point is then given at the valuergf = k[, (kn = K3;) Wwhere the magnetic (staggered)
susceptibility develops its maximum.

Cfl
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3. Large N;-limit for small Yukawa coupling parameters

The phase structure of the considered Higgs-Yukawa modebeaccessed in the largyg-
limit by scaling the coupling constants and the Higgs fiegddlitaccording to

~ }’\ . .
M N ku=FRn, Op=\/Ni-®, (3.1)

where the quantitie;sNT;\N, KN, andd,, are kept constant in the limi; — oo allowing to factorize
the fermion generation numbBk out of the effective actio®:+;[®] = Sp — Nt logdel 7).

One is thus left with the problem of finding the absolute miaiof S:¢¢[®] in terms of the
latter quantities. For sufficiently small values of the Ykaand quartic coupling constants the
kinetic term of the Higgs action becomes dominant allowimgestrict the search for the absolute
minima of Ss¢¢[P] to the ansatz

n ~ ~
O = b /Ny <m+s %“>, deRt |B=1 (3.2)

taking only a magnetizatiom and a staggered magnetizatistinfo account. After some work,
which was presented in detail in [9], one finally finds for tlffeetive action

y2 N y 2
Ser[®] = —N; - IOEZ@Iog [ <|v+(p)\ vt(@)) +H?12 (¢ — &) - |vF(p) - 2p|- \v*(D)—ZpD
2

+ P20 iy (\v 2p|-|v+(ﬂ)|—|v+(ﬂ)—2p\-\v+(p)|)2 + Sol], (3.3)

while the Higgs action in this setting reads
Sp = Ni- L { —8RN(ﬁ12—§2) +r?12+§2+5\|\.(m4+§4+6rﬁz§2—2(ﬁ12+§2))}. (3.4)

The resulting phase structure in the laigelimit can then be determined by minimizing the
effective action with respect to ands. It is presented in Fig. 1a for the selected value of the guart
coupling constaniN = 0.1 andL = «. Here we distinguish between the following four phases:

() Symmetric (SYM)mi=0,8=0 (1) Ferromagnetic (FM)m= 0, §=
(1) Anti-ferromagnetic (AFM)ni=0,5#0 (IV) Ferrimagnetic (F)m= 0,80

In Fig. 1b we compare this analytically obtainBg = «, L = c0 phase structure with the re-
sults of corresponding HMC-simulations performed 6nahd 6-lattices aiNy = 10. As expected
we observe a good qualitative agreement between the nwharid analytical results. On a quan-
titative level, however, the encountered deviations in Elgneed to be further addressed. These
deviations can be ascribed to finite volume effects as wdlhie Nt corrections.

The finite size effects are illustrated in Fig. 2a, showingne@hase transition points from the
FM to the SYM phase as obtained from our numerical simulatiom a 4-lattice (open squares),
and on an &-lattice (open circles) for the (very large) value of fermigeneration®\; = 50, chosen
to isolate the finite size effects from th¢Ns corrections. One clearly observes that the phase
transition line is shifted towards smaller values of thegiog parameter when the lattice size is
increased. The numerical results are compared tdlthe o phase transition lines obtained for
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Figure 1: Phase diagrams with respect to the Yukawa coupling congtaand the hopping paramet&
for the constant quartic couplir§m = 0.1. The black solid line indicates a first order phase traosjtivhile
the remaining transitions are of second order [10]. (a) pi@dlly obtained phase diagrams fore= « and
Nf = o. (b) Comparison with numerically obtained phase transifioints forN; = 10 andL* = 8* (open
squares) ant* = 6* (open circles).
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Figure 2: (a) Some selected phase transition points between therfagwetic and the symmetric phase, as
obtained alN; = 50 on a 4-lattice (open squares) and on &hl8ttice (open circles), are compared to the
L =4 (dotted) L = 8 (dashed), ant = o« (solid) phase transition lines determined analyticall{hie large
Nt-limit. (b) N¢-dependence of[ly;, kS atyn = 2.0 as obtained on arf'@attice (open squares) and on a
6*-lattice (open circles). The analytical, finite volumegeaN; predictions for the SYM-FM (SYM-AFM)
phase transitions are represented by the dashed (dotted) TfheNdash—dotted lines are fits of the numerical

data to linear functions as explained in the main text. IiipddtsAy = 0.1 was chosen.

L = 4 (dotted line) L = 8 (dashed line), and = « (solid line). These analytically obtained lines
perfectly describe the numerical results and one cleadgdes the convergence of the numerical
results to the analytically predictéd= o line as the lattice size increases.

The N¢-dependence of the numerically obtained critical hoppiagameter [, and ks, is
shown in Fig. 2b foyy = 2 . One clearly sees that for increasiNgthe numerical results converge
very well to the analytical finite volume predictions, as esjed. It is interesting to note that the

leading term in the finité&\; correctionsj.e. the 1/N; contribution, seems to be the only relevant
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correction here, even at the small vaNg= 2, as can be seen in Fig. 2b by fitting the deviations
to the function fy,s(Nf) = Ams/Nt with Aps being the only free parameter. Furthermore, one
observes that the critical hopping parametgy, is shifted towards larger values with decreasing
Nt while k3 is shifted towards smaller values.

For an investigation of the model at large values of the Yukaaupling constant see Refs. [9,

10].

4. Outlook towards Higgs mass bounds

In contrast to the previous discussion, where we considdedodel mostly in the largi-
limit, we now turn towards the physically interesting stioa N+ = 1. In order to investigate the
model also at odd values dff we have implemented a PHMC-algorithm, which we will discuss
in detail in an upcoming publication.

The main goal here is to compute the cuthfflependence of the Higgs boson mass by fixing
the top quark mass and the vacuum expectation walaeheir phenomenologically known values,
i.e. Mep = 175GeV andv = 246 GeV. From this dependence one can eventually determine a
upper bound of the Higgs boson mass. Vimeasured on the lattice has to be renormalized by the
Goldstone renormalization fact@g which can be obtained from the Goldstone-propag&tgi?)
according to

A2
G () =2 (4.1)
Zs
with p? denoting the squared lattice momentum. For the chosengétti = 0.240yy =0.711 Ay =
1.0) we obtainZg = 0.9662+0.0001 from the inverse Goldstone-propagator, plotted in¥agand
A = (1684+14) GeV. In Fig. 3b we show one selected component of the fermoarkator(yx, g, )
yielding the top massyep = (170+ 6) GeV in accordance with the phenomenological value.
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Figure 3: (a) Inverse Goldstone propaga®@®r(p?) versus the squared lattice momentpfnfifted to a
linear function. (b) Fermion time slice correlataft, §,) versus distance in time directidkt = [t, —t]
fitted to acoshfunction.

In the presented setup we chose the relatively large valubeofuartic coupling constant
An = 1, aiming for an upper Higgs mass bound. In Fig. 4a we presentdrresponding result for
the Higgs correlato(d, ®;,) versusit. We determine the Higgs mass by calculating the effective
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massmﬁlff at several values dit and finding its plateau value as shown in Fig. 4b. From thigpset
we findmy = (565+ 15) GeV.

However, we remark that here we give only a first and very prialary result towards our goal
mentioned above. In particular, the valuemy, = 1.62 is too small to determine the top quark
mass reliably. Furthermore, the statistics (2500 configuma for the Higgs analysis) is still to low
to obtain sufficiently precise results for the physical diies of interest.
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Figure 4: (a) Higgs time slice correlatdd;, ®,) versusit fitted to acoshfunction. (b) Effective masses
me at At fitted to plateau valueny.
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