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1. Introduction

The centre vortex model [1] has been proposed as an explanation of confinement in non-
abelian gauge theories. Centre vortices, quantised magnetic flux lines, compress the gluonic flux
into tubes and cause a linearly rising potential at large separations. Numerical evidence has been
produced to support this assumption [2], and in addition, simulations have indicated that vortices
could also account for phenomena related to chiral symmetry, such as topological charge and spon-
taneous chiral symmetry breaking (SCSB)[3, 4, 5, 6].

These non-perturbative features of the QCD vacuum are intimately linked to the properties of
the low-lying spectrum of the Dirac operator. The Atiyah-Singer index theorem [7] states that the
topological charge of a gauge field equals the index of the Dirac operator, while the Banks-Casher
relation [8] sets the spectral density of the near-zero modes proportional to the chiral condensate,
the order parameter for SCSB.

The fundamental problems of investigating chiral symmetryon the lattice have been overcome
by the invention of overlap fermions. The overlap operator obeys the Ginsparg-Wilson relation and
features an exact chiral symmetry [5]. It further implements a lattice version of the index theorem
[6], and may even be used for the definition of a local topological charge density [3].

In this paper, we work with SU(2) and report on our calculations with the overlap operator
applied to thick classical centre vortices in the shapes of planes (closed by lattice periodicity)
and spheres. We investigate the localisation of zero-modeswith respect to the position of the
thick vortices and find an interesting discrepancy in the topological charge determined by different
methods. The details of the individual vortex types will be discussed along with our results.

2. Topological Charge

We compare different definitions of the lattice topologicalcharge:

(1) The topological charge of the continuum gauge field configuration for our rather simple
vortex geometries amounts to adding up the contributions from the intersection points, which
according to the colour orientation carry a chargeQ = ±1

2.

(2) The index of the overlap Dirac operator [6, 9]. Accordingto the Atiyah-Singer index theorem
the topological charge is given by the index

ind D[A] = n−−n+ = Q (2.1)

wheren− andn+ are the number of left- and right-handed zeromodes of the Dirac operator
[7]. The overlap Dirac operator is defined by

D =
1
2
[1+ γ5ε(H+

L )] (2.2)

Here, ε is the sign function,H+
L = γ5Dw(−m0) and Dw is the usual lattice Wilson Dirac

operator with mass−m0 (we usem0 = 1.0). It has been shown that this fermionic definition
of Q coincides with the continuum simple gluonic definition in the continuum limit [10].
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The lattice version of the index theorem is only valid as longas the gauge field satisfies a so-
called “admissibility” condition. This condition assuresthatH+

L has no zero eigenvalues so
that the sign-function is well-defined. It requires that theplaquette-valuesUµν are bounded
close to trivial1. A sufficient, but not necessary bound for the “admissibility” of the gauge
field is [11, 12]

tr(1−Uµν) < 0.03 (2.3)

(3) The gluonic charge in the plaquette and hypercube definition [13], measured after cooling.

With the field strength tensorsFµν(x)= ∂µAν −∂νAµ + i
[

Aµ , Aν
]

andF̃µν = 1
2εµνρσFρσ

the quantity which determines the affiliation to a homotopy class, the topological chargeQ
or (negative) Pontryagin index reads for trivial boundary conditions[14, 15]

Q ≡
∫

d4x q(x) = −
1

16π2

∫

d4x tr(FµνF̃µν) = (2.4)

= −
1

8π2εµνρσ

∫

d4x tr{[∂µAν + iAµAν ][∂ρAσ + iAρAσ ]} = (2.5)

= −
1

8π2εµνρσ

∫

d4x tr{∂µAν∂ρAσ +2iAµAν ∂ρAσ}. (2.6)

The topological charge densityq(x) is the total derivative of the topological currentkµ

q(x) = ∂µkµ , kµ = −
1

8π2 εµνρσ tr

[

Aν∂ρAσ + i
2
3
AνAρAσ

]

. (2.7)

For smooth gauge fields one can apply the Gauss-theorem to transform the expression forQ
into a surface integral

Q =

∫

d4x q(x) =

∮

S3
dσµkµ . (2.8)

For x2 → ∞ we assume a sufficiently fast decaying field strength, so thatFµν = 0 implies
εµνρσ ∂ρAσ = −iεµνρσAρAσ . Thus we obtain

Q =
iεµνρσ

24π2

∮

S3
dσµ tr[AνAρAσ ]. (2.9)

By a gauge transformationΩ(x) we can put the free gauge field at infinity to zero

0 = A
′

µ(x2 → ∞) = Ω†(x)[Aµ (x)− i∂µ ]Ω(x) ⇐⇒ Aµ(x2 → ∞) = i∂µΩΩ†. (2.10)

The pure gauge potentialAµ in Eq. (2.10) maps a 3D volume elementdxν dxρdσ at infinity
to a volume element

iAνAρAσ dxν dxρ dσ = ∂ν ΩΩ† ∂ρΩΩ† ∂σ ΩΩ† dxν dxρ dσ (2.11)

in SU(2) group space. The requirement that the gauge transformationΩ(x) is smooth implies
that the topological chargeQ in Eq. (2.9) is integer,Q ∈ Z. Q measures the number of
timesΩ(x) wraps around the group whenx covers the spacetime surfaceS3 at x2 → ∞ once.
Choosing bases in the tangent spaces of the twoS3 manifolds, we can define an orientation
of the map. ThusQ can take positive and negative values.
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Figure 1: Plane vortices on a 124-lattice in xy- and zt-planes intersect in four points giving rise to topological
charge and localised fermionic density.

3. Description of configurations and results

3.1 Plane vortices

Planar vortices are constructed as explained in [16]. At periodic boundary conditions they al-
ways come in pairs and therefore are automatically closed. All three definitions ofQ yield identical
results for all configurations containing only plane vortices.

In fig. 1 we show the topological charge density for a gauge field consisting of 2 orthogonal
pairs of plane vortices, which intersect in 4 points, each ofwhich gives rise to a lump of topological
chargeQ = 1

2. We also show the scalar fermionic density of the two zeromodes. Our result is in
agreement with the analytical solution for the zeromodes presented in [17].

3.2 Spherical vortices

We distinguish between an orientable and a non-orientable spherical vortex.

1. The non-orientable spherical vortex of radiusR and thickness∆ is constructed with the fol-
lowing links:

Uµ(xν ) =

{

exp(iα(|~r−~r0|)~n ·~σ) t = 1,µ = 41 elsewhere
(3.1)

~n(~r, t) =
~r−~r0

|~r−~r0|
(3.2)

where the functionα is either one fromα+,α−, which are defined as

α+(r) =















0 r < R− ∆
2

π
2

(

1− r−R
∆
2

)

R− ∆
2 < r < R + ∆

2

π R + ∆
2 < r

(3.3)

α−(r) =















π r < R− ∆
2

π
2

(

1+ r−R
∆
2

)

R− ∆
2 < r < R + ∆

2

0 R + ∆
2 < r

(3.4)
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Figure 2: Thick spherical SU(2)-vortex (hedgehog, non-orientable)and variation of its link phase (α−)

This means that all links are equal to1 except for thet-links in a single time-slice at fixed
t = 1. The phase changes from 0 toπ from inside to outside (or vice versa). The graph of
α−(r) for our largest lattice 403×2 is shown in fig. 2b. The traces of all plaquettes are close
to unity, tr(1−Uµν) ≤ 1− cos π

18 = 0.015. In our computations,R is set to half the lattice
size, and∆ is chosen such that only 3 links along any direction are equalto +1 and−1,
respectively. The colour vector~n changes according to the spatial direction (see fig. 2a).

2. The orientable vortex is constructed in a similar way:

Uµ(xν) =

{

exp(iα(|~r−~r0|)|ni|σi) t = 1,µ = 41 elsewhere
(3.5)

The distinction non-/orientable [18] refers to the orientation of the vortex surface assigned by
abelian projection. While the orientable vortex has a global orientation, the non-orientable vortex
consists of 2 patches of opposite orientation separated by aclosed monopole worldline (fig. 3).

x

yy

zz

Figure 3: Non-orientable vortex surface (l) leads to monopole lines after abelian projection (r)

For a spherical vortex alone, the topological charge measured on the unsmoothed links is
vanishing, since only theUtα ,α = x,y,z plaquettes are non-zero, which gives a zero

Q ∼ εµνρσUµνUρσ (3.6)
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Figure 4: For configurations with an orientable vortex the action vanishes during cooling and no topological
charge is measured (l), whereas for non-orientable vortex configurations the topological charge rises to 1
while the actionS reaches a (non-zero) plateau (r). The data is taken from a 124-lattice.

This is independent of the lattice constant and thus holds also in the continuum limit.
For the orientable vortex, the topological charge after cooling and the overlap index are also equal
to zero, in keeping with the continuum expectation (see leftdiagram of fig. 4).

However, we find a discrepancy in the case of the non-orientable sphere vortex.
First, during cooling the topological charge rises near to±1 for α± (right diagram of fig. 4) while
the actionS reaches a (non-zero) plateau. Further, the index of the overlap operator is also non-zero,
ind D = ∓1 for α±. Details are given in the table below:

type n+ n− indD = n−−n+

non-orientable,α− 3 4 1
non-orientable,α+ 1 0 −1
orientable,α± 0 0 0

The non-orientable vortex also gives extra contributions to the index when it is combined with
other vortices, possibly including intersection points which produce “real” topological charge.

The discrepancy between overlap index and continuum topological charge is not due to the
coarse discretisation. We have used lattice sizes withNt = 2 andNs ranging from 8 to 40 in steps of
4 [19]. ForNs ≥ 40, we satisfy the admissibility condition (2.3), but our results remain unaltered.

More generally, the following empirical rule can be formulated: Non-orientable spherical vor-
tices in slices (3D volumes) of the lattice contribute to cooled topological charge and Dirac oper-
ator index with an integer given by the “winding number” [9] of the corresponding Wilson lines,
mapping the 3D volume of the slice to the SU(2) manifold of theWilson lines. To compute this
“winding number”, thet-links are seen as a map not fromT4, but from the compactified time-slice
t = 0, in which the sphere is located, to SU(2). The time-slice can be compactified toS3 because
the links outside the sphere are all equal to+1.
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4. Conclusion

For non-orientable spherical vortices, the index of the overlap Dirac operator differs from the
topological charge in the continuum limit. The reason for the seeming contradiction is the singular
nature of the continuum gauge field equivalent to our spherical vortex. This singularity invalidates
the usual derivation of the index theorem.
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