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1. Introduction

The ε-expansion, where mπL� 1 and 4πF2L2 � 1, is determined by Goldstone boson physics.
For that reason it is an excellent tool to determine the low-energy constants of ChPT of QCD. In
order to reach this regime the simulation should be done with sufficiently small quark masses.
This requires a Dirac operator with good chiral behavior at the actual lattice spacing. This became
possible in full QCD only recently [1, 2, 3, 4].

We consider 2+1 light flavor QCD applying the parametrized fixed-point (FP) action [4]. The
exact FP action has nice features, most importantly, it has exact chiral symmetry. The parametrized
FP action is an approximation which gave very promising results in the quenched approximation,
in particular good scaling even at a = 0.15 fm and the spectrum of the FP Dirac operator was close
to that required by chiral symmetry.

The FP Dirac operator satisfies the Ginsparg-Wilson relation:

Dγ5 + γ5D = Dγ52RD , (1.1)

where R is a local operator living on the hypercube. The quark mass is introduced as usual for
Ginsparg-Wilson operators:

D(m) = D+m
(

1
2R

− 1
2

D
)

. (1.2)

The parametrized fixed-point gauge action and Dirac operator DFP involve a special smear-
ing with projection to SU(3). Therefore we cannot use a hybrid Monte Carlo algorithm. We use a
partially global update procedure with nested accept/reject steps [5] relying on algorithmic develop-
ments in [6, 7, 8, 9, 10, 11, 12]. The contribution of the∼ 100 lowest lying modes to be determined
is calculated exactly, the rest is treated stochastically. As a spinoff, for all the configurations in the
Markov chain we have the low-lying eigenvectors which can be used in the analysis.

1.1 Remarks on the Markov chain and numerical implementation

In the algorithm the trial configurations offered in the last stochastic accept/reject step differ
by a full Metropolis sweep and are accepted with Pacc ≈ 0.6. We spent 13 minutes for one full
accept/reject step in the Markov chain using 288 CPUs on the Altix in Munich. On this architecture
it is very important to get into the cache of the single cores. Therefore we had to rewrite the whole
parallelization of the existing code already running on diverse other machines while implementing
it for the Altix. We use the BiCGStab(l) inverter in the stochastic estimator where l is tuned
depending on the last number of inversion steps.

At the moment we have ∼ 4000 configurations in the Markov chain using the partially global
update algorithm [5]. In order to reduce the autocorrelation time (and the expenses of the analysis)
we only take every tenth configuration minimizing the autocorrelation length and get∼ 400 pruned
configurations.

1.2 Technicalities - 124 lattice

Our lattice spacing is a = 0.129(5) fm determined from the Sommer parameter r0 = 0.49 fm.
Therefore our 124 lattice has a volume of V ≈ (1.55 fm)4. We calculated the additive mass shift of
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Figure 1: The AWI mass vs. the average quark mass M = (m f +m f ′)/2.

aM0 = 0.0147(3) via the axial Ward identity:

∂t〈A f f ′(t)Pf f ′(0)〉= 2MAWI〈Pf f ′(t)Pf f ′(0)〉 , where f f ′ = uu ,us ,ss . (1.3)

In Fig. 1 we plotted the AWI mass as a function of the average quark mass M = (m f + m f ′)/2,
together with a linear fit. The intercept with the horizontal axis gives the additive mass renormal-
ization of the quark masses. One would reach the chiral limit at this value of the mass parameter in
Eq. (1.2). The points uu, us and ss refer to the corresponding flavors in Eq. (1.3). Subtracting the
mass shift M0 we get for the bare masses mud = 16 MeV and ms = 137 MeV.

2. Eigenvalues of the Dirac operator

The FP Dirac operator follows Eq. (1.1). On low-lying eigenvectors the operator 2R is close
to 1 and we ignore it in this presentation for simplicity, i.e. we set 2R = 1 in our discussion. Then
the low-lying complex spectrum of DFP lies on a circle to a good approximation, while some of the
real eigenvalues are scattered away from the origin.

It is expected that the size of a effective support of the wave function and the position of the
real eigenvalue are strongly correlated. Thus we introduce the inverse participation ratio (IPR) by

IPR = ∑
x
||ψ(λ )(x)||4 , where ||ψ(λ )(x)||2 =

12

∑
i=1
|ψ(λ )

i (x)|2 (2.1)

for a normalized eigenvector ψ(λ ). We plot the participation ratio p = (V × IPR)−1, where we get
p→ O(1) for delocalized and p→ O(1/V ) for localized eigenvectors ψ(λ ).

In the analysis we used a cut λ = 0.03 (solid line in Fig. 3) in the sense that only those real
eigenvalues which were below this value were considered to represent the topological charge ν .
With this cut we found 328, 51 and 35 configurations for the ν = 0,1,2 sectors, respectively.
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Figure 2: The left plot shows the low-lying eigenvalues of the FP Dirac operator on 50 configurations at the
volume 83×24 and the plot on the right hand side displays the same for 124 configurations.
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Figure 3: The relative effective volume occupied by the wave function ((V × IPR)−1) vs. the eigenvalue of
DFP for real modes.

This cut is sufficiently smaller than the typical gap in the complex eigenvalues (cf. Fig. 2) and
corresponds to a small participation ratio (cf. Fig. 3).

3. Comparison to RMT

We use the stereographic projection of the complex eigenvalues to the imaginary axis

iα =
λ

1−λ/2
. (3.1)

We denote the k-th eigenvalue in the Qtop = ν sector as ανk. Random matrix theory (RMT) predicts
the distribution of the scaled eigenvalues ξνk(µi) = ανkΣV depending on µi = miΣV , i = 1, . . . ,N f .
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Figure 4: Cumulative distributions of ξνk in the topological sector ν = 0,1,2. We show the k-th smallest
eigenvalues for k = 1,2,3.

The cumulative distributions of ξνk have only one matching parameter, which is the bare condensate
Σ. Fitting the distribution of the 3 lowest lying eigenvalues in the ν = 0,1 topological sector to the
RMT predictions we get Σ1/3 = 0.286(3)(9) GeV.

As Fig. 4 shows the distributions for different ν ,k values are consistent with each other. Note,
however, that the shape of the ν = 0, k = 1 distribution is different from that of the RMT. The
deviation in the shape could be a finite-size effect (which shows up at smallest eigenvalue, i.e. for
largest wave-length), but this needs further investigations.
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Figure 5: We calculate the ratios between different averaged eigenvalues 〈ξνk〉 which are denoted as νk.
The different symbols denote the RMT predictions for our corresponding results.

We also compute the ratios 〈ξνk〉/〈ξν ′k′〉 of the mean values and compare them to the RMT
predictions. We find a generally good agreement (cf. Fig. 5) even in higher topological sectors.

3.1 Finite Volume corrections

The determined Σ is the condensate of QCD in the finite volume. Thus, we have to correct the
finite size effects using chiral perturbation theory with N f = 2, assuming that in this correction the
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s-quark contribution is negligible [4, 13]

Σ = Σ∞

(
1+

3
2

β1

F2L2 + . . .

)
, (3.2)

where β1 = 0.14046 is a shape coefficient. After the finite size correction we get for the infinite-
volume bare condensate

Σ
1/3
∞ = 0.255(3)(9) GeV . (3.3)

4. Summary and Outlook

Simulating the parametrized FP action with partially global update procedure we were able to
reach sufficiently small quark masses to study the ε-regime in the 2+1 flavor QCD. The distribution
of the low-lying eigenvalues in different topological sectors is in good agreement with the RMT
predictions, although the identification of the topological charge is somewhat ambiguous.

The next steps are to compute the low energy constant F from the 〈PP〉 correlator, to cal-
culate the corresponding Z factors and to complete a lattice simulation on a 123× 24 lattice with
comparable lattice spacing in the δ -regime.
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