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The static Coulomb potential of Quantum Electrodynamics iscalculated in the presence of a

strong magnetic field by computing perturbatively the vacuum expectation value of the cor-

responding Wilson loop in the lowest Landau level (LLL) approximation. In the LLL, two

different regimes of dynamical mass,mdyn., can be distinguished. These two regimes are

|q2
‖| ≪ m2

dyn. ≪ |eB| and m2
dyn. ≪ |q2

‖| ≪ |eB|, whereq‖ is the longitudinal components of

the momentum relative to the external magnetic fieldB. As it turns out, the potential in

the first regime,|q2
‖| ≪ m2

dyn. ≪ |eB|, has the general form of a modfied Coulomb potential

V1(R,θ ) = −α
R

(
A1(α,θ )− γA2(α ,θ)

R2 +
γ2A3(α ,θ)

R4

)
, whereα is the fine structure constant and

θ the angle between the particle-antiparticle axis and the external magnetic field. In the second

regime,m2
dyn. ≪ |q2

‖| ≪ |eB|, however, the potential has the general form of a modified Yukawa

potentialV2(R,θ ) = − α e−Meff.R

(1− α
π )g(θ)R with Meff.(α,θ ) ≡ g(θ )

√
2α |eB|

π . Theθ -dependence ofV1 and

V2 is a novel property, which was not observed before in the literature. As it turns out, in the

regime|q2
‖| ≪ m2

dyn. ≪ |eB|, for strong enough magnetic field and depending on the angleθ , a

qualitative change occurs in the Coulomb-like potentialV1; Whereas forθ = 0,π the potential is

repulsive, it exhibits a minimum for anglesθ ∈]0,π [.
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1. Introduction

It is widely accepted that the formation of quark bound states in the QCD low energy regime,
arises by spontaneous breaking of chiral symmetry of QCD Lagrangian. But, chiral symmetry
breaking can also be induced dynamically in the presence of background electromagnetic fields. In
particular, strong and constant magnetic fields lead to the formation of chiral symmetry breaking
condensate〈ψ̄ψ〉, that plays the role of a dynamically generated fermion massand breaks the chiral
symmetry of the theory consequently. This is the well-established scenario of magnetic catalysis
[2]. The essence of this effect is the dimensional reductionfrom D to D− 2 dimensions in the
dynamics of fermion pairing in a strong magnetic field, that is believed to be dominated by the
lowest Landau level (LLL).

Here, we are interested on static Coulomb potential produced by a point-like electric charge
placed into a strong but constant magnetic field. Recently, this potential is calculated in [3] and [1].
In [3], it is shown that the standard Coulomb law is modified bythe vacuum polarization arising
in the external magnetic field. This implies a short range character of interaction, expressed as
Yukawa law

V(x) = −αe−Mγ R

R
, with the photon mass Mγ ≡

√
2α |eB|Nf

π
, (1.1)

R≡ |x| the distance between a particle-antiparticle pair andα ≡ e2

4π the fine structure constant. In
these proceedings, after briefly introducing QED in an external magnetic field, we will present the
results from [1], where this potential is determined anew bycomputing perturbatively the vacuum
expectation value (VEV) of the corresponding Wilson loop toa static fermion-antifermion pair. In
the regime of LLL dominance, two different regions of dynamical massmdyn., |q2

‖| ≪ m2
dyn. ≪ |eB|

andm2
dyn. ≪ |q2

‖| ≪ |eB|, will be considered separately. In the regime|q2
‖| ≪ m2

dyn. ≪ |eB|, the
potential will be shown to have the general form of a modified Coulomb potential

V1(R,θ) = −α
R

(
A1(α ,θ)− γA2(α ,θ)

R2 +
γ2A3(α ,θ)

R4

)
, with γ ≡ 2α

3πm2
dyn.

, (1.2)

and in the regimem2
dyn. ≪ |q2

‖| ≪ |eB|, it is a Yukawa-like potential

V2(R,θ) = − α e−Meff.R

(1− α
π )g(θ)R

, with the photon mass Meff.(θ) ≡ g(θ)

√
2α |eB|

π
. (1.3)

In (1.2) and (1.3),Ai , i = 1,2,3 andg(θ), whose exact expressions will be presented in Section
4, are some functions depending onθ , the angle between the particle-antiparticle axis and the
direction of the magnetic field. Up to this explicit novel dependence onθ , the potentialV2(R,θ)

from (1.3) is comparable with the potential (1.1) from [3]. The consequences of theθ dependence
will be also discussed in Section 4.

2. QED in a strong magnetic field

We start with the QED Lagrangian density

L = −1
4

FµνFµν + ψ̄γµ (
i∂µ +eAµ

)
ψ −mψ̄ψ , (2.1)
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where the vector fieldAµ = aµ + Aext.
µ . Here, aµ is the Abelian quantum field andFµν is the

corresponding field strength.Aext.
µ describes an external electromagnetic field. It is possibleto

fix the gauge so that the magnetic field is directed in the thirddirection. Here, we choose the
symmetric gauge,Aext.

µ = B
2 (0,x2,−x1,0). Using the Schwinger proper time formalism [4], the full

photon propagator in the LLL approximation is given by [2]

iD̃µν(q) =
g‖µν

q2 +q2
‖Π

(
q2
‖,q

2
⊥

) , (2.2)

with Π(q2
⊥,q2

‖) having the form [5]

Π(q2
⊥,q2

‖) ≃ +
α |eB|Nf

3πm2
dyn.

e−
q2
⊥

2|eB| for |q2
‖| ≪ m2

dyn. ≪ |eB|, (2.3)

Π(q2
⊥,q2

‖) ≃−2α |eB|Nf

π q2
‖

e−
q2
⊥

2|eB| for m2
dyn. ≪ |q2

‖| ≪ |eB|. (2.4)

In the second regime, the photons acquire a finite mass. This can be shown by plugging (2.4) in the
full photon propagator (2.2) and assuming that|q2

⊥| ≪ |eB|. The corresponding photon propagator
is then given by

D̃µν(q) ≈− ig‖
µν

q2−M2
γ
, with the photon mass Mγ =

√
2α |eB|Nf

π
. (2.5)

The appearance of a finite photon massMγ is the result of the dimensional reduction 3+1→ 1+1
in the presence of a constant magnetic field. As for the dynamically generated fermion massmdyn.,
it can be determined nonperturbatively by solving the corresponding Schwinger-Dyson equation in
the rainbow (ladder) approximation [2]. It is given by

mdyn. = C
√

eBexp

(
−π

2

( π
2α

)1/2
)

, (2.6)

where the constantC is of order one.

3. The Wilson loop and the modified Coulomb potential in a strong magnetic field

In ordinary QED, the static Coulomb potentialV(R) between a particle and an antiparticle is
given by the VEV of a closed Wilson loop (see [6] and the references therein)

V(R) = − lim
T→∞

1
T

ln〈WC[A]〉, (3.1)

where the loop correlation function –the Wilson loop, is defined by

WC[A] ≡ e
ie

∮

C
Aµ (x)dxµ

. (3.2)

The VEV in (3.1) is given by

〈O〉 ≡
∫

DAµDψDψ̄ O e−S
∫

DAµDψDψ̄ e−S . (3.3)
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ForSbeing the QED action, the Coulomb potentialV(R) = − e2

4πR can be analytically calculated in
the quenched approximation. To do this, we expand〈WC[A]〉 in powers of the background fieldAµ

〈WC[A]〉 = 〈1+ ie
∮

C
dxµ Aµ(x)− e2

2

∮

C

∮

C
dxµdyνAµ(x)Aν(y)+ · · ·〉. (3.4)

Plugging (3.4) in (3.1), the potential reads

V(R) = lim
T→∞

e2

2T

∮

C

∮

C
dxµdyν Dµν(x,y)+O(e3). (3.5)

Replacing nowDµν(x,y) by the photon propagator of the ordinary QED in the coordinate space
Dµν(x,y) =

δµν
4π2(x−y)2 , the standard Coulomb potential can be derived. Note that, in (3.4), the second

term including only one gauge field does not contribute. As for the other terms, those with an odd
number of external photon lines does not contribute to the above expansion. This is because of
the Furry’s theorem, that holds in ordinary QED in contrary to QED in the presence of external
magnetic field. In the next section, using the above idea the particle-antiparticle potential in the
LLL approximation will be derived in two different regimes by replacingDµν(x,y) in (3.5) with
the full photon propagator from (2.2)-(2.4).

4. Results

4.1 Modified Coulomb potential in |q2
‖| ≪ m2

dyn. ≪ |eB| regime

Substituting (2.3) withNf = 1 in (2.2) the full photon propagator in the coordinate spacein
this regime is given by

D̃µν(x) = −ig‖
µν

∫
d4q

(2π)4

eiqx

q2 + α |eB|
3πm2

dyn.
q2
‖exp

(
− q2

⊥
2|eB|

) . (4.1)

After a lengthy but straightforward calculation, we arriveat (see [1] for more details)

D̃µν(R,θ ,T) =
δ ‖

µν

4π2a1

[(
1+

γ
a1

− 4a2 + γR2sin2θ
2βa2

1

+
3a2R2sin2 θ

2β 2a3
1

)

+
4γ2

a2
1

(
1− 3R2 sin2θ

2βa1
+

3R4sin4 θ
8β 2a2

1

)

−12γa2

βa3
1

(
2− 2

βa1

(
2R2sin2 θ +

a2

γ

)
+

5

4β 2a2
1

(
R4sin4θ +

4a2R2sin2 θ
γ

)
− 15a2R4sin4 θ

8γβ 3a3
1

)

− γ
|eB|βa2

1

(
1− 3

βa1

(
R2sin2 θ

2
+

a2

γ

)
+

6

β 2a2
1

(
R4sin4 θ

16
+

a2R2sin2 θ
γ

)
− 15a2R4sin4 θ

8γβ 3a3
1

)]
.

(4.2)

Here,β−1 ≡ 4

(
1+ α |eB|

3πm2
dyn.

)
andγ(α) ≡ 2α

3πm2
dyn.

, are constant c-numbers, anda1,2 = a1,2 (R,θ ,T)

are defined bya1(R,θ ,T) ≡ T2 + R2 f 2(α ,θ) with f 2(α ,θ) ≡ 1+ γ |eB|
2 sin2 θ , anda2(R,θ ,T) ≡

βγ
(
T2 +R2cos2θ

)
. In all these expressionsR≡ |x| is the distance between the static fermion
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and antifermion pair,θ is the angle between the particle-antiparticle axis and thedirection of the
magnetic fieldB, i.e. thex3 direction, andT ≡ ix0 is the Euclidean time. The static Coulomb
potential can then be calculated using (3.5) and reads

V(R,θ) = −α
R

(
A1(α ,θ)− γA2(α ,θ)

R2 +
γ2A3(α ,θ)

R4

)
, (4.3)

with

A1(α ,θ) ≡ 1
f
,

A2(α ,θ) ≡− 1
4 f 3

(
1− 3cos2θ

f 2 − 3sin2θ
8β f 2 +

15sin2θ cos2 θ
8β f 4

)
,

A3(α ,θ) ≡ +
9

16f 5

(
1− 5sin2 θ

4β f 2 +
35sin4 θ
128β 2 f 4

)

−15cos2θ
8 f 7

(
3− 7

4β f 2

(
2β cos2θ +3sin2θ

)
+

63sin2θ
8β 2 f 4

(
β cos2 θ +

3sin2θ
16

)
− 693cos2θ sin4θ

256β 2 f 6

)

− 3
16|eB| f 5γβ

(
1− 5

4β f 2

(
4β cos2 θ +sin2 θ

)
+

35sin2 θ
4β 2 f 4

(
β cos2θ +

sin2 θ
32

)
− 315cos2θ sin4 θ

128β 2 f 6

)
.

Figure 1 shows this potential for different choices of the magnetic fieldB= 105,106,107,109 (from
right to left) and differentθ = 0,π/3,2π/3,π. According to this result, forR→ 0 the potential
falls more rapidly to−∞ the smaller the magnetic field is and the shape of the potentials are almost
the same for different choices ofθ .
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Figure 1: PotentialV1(R,θ ) for differentB andθ . No qualitative changes occurs by varying the angleθ .

This situation changes by neglecting the coefficientγ2A3 comparing withA1 andγA2 in V1(R,θ).
In [1] we have studied the behavior of the coefficientsA1, γA2 andγ2A3 as a function of the angle
θ for different magnetic fields. As it turns out, the coefficients A1,γA2 and γ2A3 are positive
∀θ ∈ [0,π] and for any choice of constant magnetic fieldB, butA3 falls down rapidly by increasing
the strength of the magnetic field and can be indeed neglected. ForB≥ 105, the potentialV1(R,θ)

can be therefore replaced byV3(R,θ) = −α
R

(
A1(α ,θ)− γA2(α ,θ )

R2

)
, which has its minimum at
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Rmin(B,θ) =
√

3γA2
A1

. Figure 2 showsV3(R,θ) for different choices of the magnetic fieldB =

105,106,107 and 109 (from right to left) and differentθ = 0,π/3,π/2,2π/3,π. As it turns out,
whereas forθ = 0,π the potential is repulsive, it exhibits a minimum for anglesθ ∈]0,π[ and
distancesR≤ 0.005 fm. Moreover, the depth of the potential atRmin increases with the magnetic
field. We interpret this effect as a possibility for bound state formation. The answer to the question
concerning the existence and the number of bound states in the potentialV3 is beyond the scope of
this work1.
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Figure 2: PotentialV3(R,θ ) for differentB andθ . Bound states can be formed forθ ∈]0,π [ and for strong
magnetic fieldsB≥ 105 in the regimeR≤ 0.005 fm. The depth of the potential atRmin increases with the
magnetic field.

4.2 Modified Coulomb potential in m2
dyn. ≪ |q2

‖| ≪ |eB| regime

To compute the inter-particle potential in this regime, we have to determine first the photon prop-
agator in the coordinate space. To do this, we substitute (2.4) in (2.2). ForNf = 1, we arrive first
at

D̃µν(x) = −ig‖
µν

∫
d4q

(2π)4

eiqx

q2− 2α |eB|
π exp

(
− q2

⊥
2|eB|

) . (4.4)

The integration overq can be performed using the approximationq2
⊥ ≪ |eB| which is valid in the

regime of LLL dominance (see [1] for more details). We arriveat

D̃µν(R,θ ,T) =
δ ‖

µν

4π2
(
1− α

π
) Mγ√

T2 +R2g2(θ)
K1

(
Mγ

√
T2 +R2g2(θ)

)
, (4.5)

whereMγ ≡
√

2α |eB|
π , andg(θ) ≡

√
cos2θ + sin2 θ

1− α
π

. Using now (3.5), the modified potential can be
determined and reads

V(R,θ) = − α
(1− α

π )g(θ)R
e−Mγ g(θ )R, (4.6)

1A nonperturbative analysis of the corresponding Schrödinger equation describing the Nambu-Goldstone modes
and arising from a Bethe-Salpeter equation for bound statesshows that at least one bound state can be formed in the
attractive potential inD = 4 dimensions [2].
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This potential is indeed comparable with the attractive Yukawa potentialVYukawa(R) =−α
Re−mR, with

α → α
(1− α

π )g(θ )
and the effective photon massm→ Meff.(θ) ≡ Mγg(θ).
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Figure 3: PotentialV2(R,θ ) for differentB andθ . No qualitative changes occurs by varying the angleθ .

This result is in agreement with the general result about themassive photons in a strong magnetic
field in the LLL approximation. It is well-known that in the regimem2

dyn. ≪ |q2
‖| ≪ |eB|, the 3+1

dimensional QED in the LLL approximation is reduced to a 1+1 dimensional Schwinger model,
where the photon acquires a finite massMγ . Comparing to the above result, the effective photon
mass in this regime is given byMeff. = Mγg(θ) and depends explicitly on the angleθ between the
particle axis and the direction of the external magnetic field. Figure 3 shows the potentialV2(R,θ)

in the second regimem2
dyn. ≪ |q2

‖| ≪ |eB| of LLL, for different magnetic fieldB and angleθ .
Again no qualitative changes occurs by varying the angleθ . It would be interesting to determine
the inter-particle potential of QED in the LLL using a nonperturbative lattice calculation of the
corresponding Wilson loop.
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