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1. Introduction

Currently, an increasing number of mixed-action simulations are being performed by various
groups (for example, see Refs. [1, 2, 3, 4]) to measure various quantities of interest. There are
several reasons why this is a useful endeavor, both practical and theoretical. Practically speaking,
one can, for example, use existing gauge field configurationsto calculate the quantities one is
interested in, but not be restricted to the same discretization of quarks. To simplify the analysis of
lattice data, the symmetries of the valence sector are much more important to retain, so one should
choose a valence discretization which has the symmetries one desires most. Additionally, there
is both a theoretical and practical interest in using different methods to obtain the same physical
quantity. While different calculations with different discretizations are useful, one can add more
cross checks by mixing various discretizations for the samequantities.

A theoretical issue which arises in mixed action simulations is that unitarity is violated at non-
zero lattice spacing [5]. This is due to the fact that at non-zero lattice spacing the valence and sea
sectors have different discretization effects so that any tuning is only exact up to lattice spacing
dependent terms. Thus a mixed action theory is necessarily partially quenched, and this violation
of unitarity is much more pronounced and only goes away in both the continuum limitand the
limit where the sea and valence masses become equal. One cannot reach the full QCD limit, where
msea= mval, at finite lattice spacing.

We are currently calculating the kaon B-parameter using a mixed action [4, 6], and the question
is: Can we theoretically understand, for a given quantity, the primary source of the violation of
unitarity, and thus remove this artifact to reveal the physical quantities? For many quantities, such
as mπ or BK , for example, the violation of unitarity shows up mildly in the chiral expressions,
and one would like to see a more pronounced violation of unitarity that can still be understood
using chiral perturbation theory (χPT). In this work we show that this can in fact be done when
analyzing the isovector-scalar correlator, thea0, using mixed-actionχPT [7, 8]. Quantities such
as thea0 correlator (as well asπ −π scattering in theI = 0 channel) are particularly sensitive to
this effect, due to flavor-neutral intermediate states. These include disconnected (at the quark level)
diagrams, where unitarity violations are more pronounced,and for thea0 specifically, this affects
the lattice correlator itself. While the issues we discuss are generic to all mixed-action simulations,
we will focus on those where the sea quarks are staggered and the valence quarks are domain wall.

2. Mixed-Action χPT

The formalism ofχPT for a mixed action was laid down initially in Ref. [9] in thecontext of
mπ , fπ , and has been extended for many other quantities. Although we will not describe mixed-
action χPT in detail, we would like to look at the three different types of mesons that can arise:
those made from two sea quarks, those from two valence quarks, and finally mesons with one of
each type of quark. For the two valence quarks, we have the tree-level relation for the masses

m2
vv′ = µ(mv +mv′ +2mres) (2.1)
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du dua0 du du

π

η

Figure 1: The two leading terms from the scalar current: The first is thedirect term, corresponding to the
propagation of ana0 meson, while the second is one possible “bubble” term, wherethere is aπ and anη
propagating (we can also haveπ −π andK −K intermediate states as well).

wheremres is the residual mass1 andv,v′ are two valence quark flavors. With two staggered sea
quarks, a meson of a given flavor also has associated with it a tastet [10, 11]

m2
ss′ = µ(ms+ms′)+a2∆t , (2.2)

wheret runs over the 16 tastes which fall into five multiplets transforming in irreducible represen-
tations of the remainingSO(4) taste symmetry:t ∈ {P,A,T,V, I} [10, 11]. For the pseudoscalar
taste,∆P = 0, which is a manifestation of the fact that this staggered meson is a Goldstone boson
at finite lattice spacing whenms,s′ → 0. The relevant taste splitting in mixed-action simulations is
the singlet taste,∆I (the valence quarks, being taste singlets, couple only to the taste-singlet meson
in the sea sector) and this is also the largest of all the tastesplittings. Finally, a meson with one sea
and one valence quark has the mass

m2
vs = µ(mv +ms+mres)+a2∆mix , (2.3)

where∆mix is a new splitting, unique to the particular choice of mixed action, that arises from four-
quark operators in the same way as the staggered taste splittings arise [9]. Although this parameter
does not appear in many mixed action quantities (such asm2

π or BK), it will play an important role
in fK and also the scalar correlator.

3. The a0 in mixed-action χPT

The isovector scalar is created using the following local current at the underlying quark level
and the chiral level (since we will be usingχPT to calculate the contribution to the scalar correlator
coming from two-particle intermediate states):

S(x, t) = d(x, t)u(x, t) , Sχ(x) = µ
[

Φ2(x)
]

ud . (3.1)

We are interested in the lattice correlator given byC(t) = ∑x
〈

0|S(x, t)S†(0,0)|0
〉

. The leading
term in this correlator corresponds to the propagation of ana0 from time 0 to timet. However, as

1Recall that the residual mass arises from domain-wall quarks by the overlap of the left- and right-handed modes
with a finite-sized fifth dimension.mres is a measure of the chiral symmetry breaking caused by this overlap.
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was first noticed in the quenched case [7], there is a sizable contribution to the correlator coming
from two-particle intermediate states, shown in Fig. 3. Thus, instead of using the usual single-
exponential expression to fit the lattice correlator, we usethe form

C(t) = Ae−ma0t +B(t)+ · · · (3.2)

where the· · · represent excited state contributions that we will neglect. The “bubble term”B(t)
has been calculated by Prelovsek [8] using mixed-actionχPT, with the result for 2+1 flavors of sea
quarks (taking the time direction to be infinite in length)

B(t) =
µ2

3L3 ∑
k

[

2
9
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, (3.3)

where we have definedω2
i =

√

k2+m2
i , andm2

ηI
= (m2

UI
+2m2

SI
)/3.

There are several interesting things to note here. Once∆mix and∆I (which appear inmvu,mvs,

andmUI ,mSI ) are known, then there are no free parameters in this expression. The meson masses
can all be measured and the coefficientµ can be determined as well from spectrum calculations.2

Both the shape and the normalization are completely predicted by theχPT.

Additionally, there is a negative residue in the momentum-space bubble term, which leads to
the two negative terms above. The third term is especially dangerous because of the linear-in-t
growth factor in front of the exponential. This term dominates at intermediates times, and if the
masses are light enough, as we will show, this will cause the correlator to become negative. This
linear rise comes about by the existence of a double pole in the momentum-space correlator, and
we can get rid of this term with an appropriate tuning of the masses, as discussed next, but this will
not fully solve our problem.

This occurs because this theory is not unitary at finite lattice spacing. In fact, one could tune
the valence pion masses to the sea pion masses to try to obtain“full QCD,” but no unique point
exists at finite lattice spacing. This can be seen especiallyin this case: The “natural” tuning would
be to setmvv= mUP, since these both will vanish in the chiral limit at finite lattice spacing. However,
this only makes the troublesome term inB(t) larger, and if we were to try to get rid of this double
pole, we should setmvv = mUI , and theωvvt term inB(t) vanishes.3 Note though, that this does not
guarantee positivity, since there still is another possible negative term in the bubble (it is just no
longer enhanced by the double pole). Additionally, although we could in principle tune the theory
to fix the enhancement of the unitarity violation in thea0 correlator (and other quantities such as
theI = 0 π −π scattering phase shift, for example [5]), it will still violate unitarity to some degree.
We cannot completely solve this problem at finite lattice spacing.

2It is interesting to also note that one does not actually needto have measured the residual mass, because if one
merely inputs the value formvv as measured for a given valence quark massmv, thenmres is implicitly included in the
meson mass.

3On the coarse MILC lattices this may not be an advisable tuning, since then we will have a rather heavy valence
pion.
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The key here is that there is no such concept as full QCD for a mixed-action (any tuning one
chooses will still never get rid of the negative residue in the scalar correlator). It is true that this
violation vanishes in the continuum limit, so full QCD is recovered, since we expect both rooted-
staggered quarks and domain-wall quarks to reproduce the same continuum theory asa→ 0.4

We have measured the meson masses with two valence quarks as well as ∆mix, and for a
detailed discussion of this, see [4]. We have presented these results previously in [13] and our
results agree with an independent determination in Ref. [14]. Additionally, we can use the values
of ∆I that have been determined by the MILC collaboration [15] to input into the bubble formula.

4. Lattice results for scalar correlator
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Figure 2: Scalar correlator data for various valence masses and a sea mass of 0.007.

In Fig. 2 we show a portion of the data for the scalar correlator that we have accumulated
thus far. The data shown is for the coarse (a ∼ 0.12 fm) MILC ensemble with a light sea quark
mass of 0.007, withamv ∈ {0.01,0.02,0.03, 0.04,0.05}. Fig. 2 shows the qualitatively expected
behavior based on the expression for B(t) in Eq. (3.3). In particular, the size of the negative bubble
contribution decreases as the valence quark mass increases, such that the correlator stays positive
for all times in the data.

In Fig. 3(a) we show the prediction for the bubble contribution, which has no free parameters,
overlaid on the scalar correlator data for the 0.007 sea quark mass and the 0.01 valence quark
mass. The red line is the bubble function using the parameters for ∆mix as shown in [4], and∆I as
calculated by MILC [15]. This is the bubble as predicted by mixed-actionχPT. The blue line is
the same function but for the continuum limit, where we have set ∆mix = ∆I = 0. We can see that

4Although there is no rigorous proof, there is considerable supporting evidence that the rooting procedure for
staggered fermions is correct. We work under the plausible assumption that using the rooting procedure we recover
QCD in the continuum limit (see Ref. [12] and references therein).
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Figure 3: (a) Scalar correlator data formval = 0.01 andmsea= 0.007 (data points) and the bubble function
with (solid red line) and without (solid blue line) the splittings included. (b) Scalar correlator data for
mval = 0.01 andmsea= 0.007, with a fit (red line) toC(t).

for this set of masses, the continuum bubble does not go negative, and clearly cannot describe our
data. This shows that it is necessary to use the correctχPT formulation corresponding to the lattice
action one chooses. Of course, for small times, the direct term Ae−ma0t dominates, so we wouldn’t
expect the bubble to match the data precisely, but fort ≥ 3, the mixed-action bubble is qualitatively
consistent with our data.

Finally, in Fig. 3(b), we show the data and a fit to the expression given in Eq. (3.2). Vari-
ous fitting ranges give similar results with comparable correlatedχ2/d.o. f . (roughly 1.2 for the fit
shown), yet the values for thea0 mass in the exponential term vary greatly. Without a finer resolu-
tion in the time direction, we cannot hope to determine thea0 mass with this expression. However,
this is able to serve as a test of the methodology: The use of mixed-actionχPT seems to describe
the low-energy behavior of our theory qualitatively quite well.5

5. Conclusion

We see that the behavior of the scalar correlator is qualitatively predicted by mixed-action
χPT. This gives us confidence that although a mixed-action simulation is not unitary at finite lattice
spacing, we can understand theoretically the primary source of this unitarity violation is, and more
importantly can quantitatively account for it. Of course, with better statistics it might turn out
that there are higher-order terms that come into play, and thus we will need a more sophisticated
analysis. However, at this level, the negativity of thea0 correlator is accounted for solely from the
inclusion of a single, well-defined, bubble term, coming from two-particle intermediate states.

5There are other possible violations of unitarity that we cannot resolve in our data and cannot be described byχPT.
These may be due to the non-positive-definite transfer matrix for domain-wall fermions [16], and also enhanced zero-
mode contributions (in the quenched case, this was studied in Ref. [17], for domain-wall fermions), which would be
noticeable at small times were we to resolve our data more precisely.
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