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1. Introduction

Lattice QCD is by now a mature field which produces reliablargitative results from ab-initio
calculations. With refined techniques the range of quastithat can be computed on the lattice is
increasing continuously.

Observables that recently have started to see a lot of @atteint the lattice community are
masses of excited states of light hadrons (see e.g. [1])tdixns, however, are quantities that are
notoriously difficult on the lattice. The reason is that tnergiesW, of excited states appear only
as sub-leading exponentials in the spectral decompogifi&uclidean 2-point functions,

Gij(t) = (Gi()0;(0)") = 5 (0|Gi[m)(n|O]|0) e . (1.1)
n

Here@i,ﬁj are operators with the quantum numbers of the state onesigsted in. The sum runs
over all physical statem) with these quantum numbers, ang are the corresponding energies
WL <W, <W5...). Itis obvious, that the exponential decay of the 2-pointfion is dominated
by the energy of the ground staté, while the energies of the excited stafés\Ws... appear in sub-
leading exponentials and thus their contribution to theR2{gfunction is exponentially suppressed
relative to the ground state.

Although other proposals for the extraction of the excitiedesenergies exist [2], the most
commonly applied technique is the variational method [3HHre one uses a large basis of inter-
polatorsQ;, i =1,2, ...N and considers the generalized eigenvalue problem df thdl correlation
matrix C(t),

ct)v™W = At)™ Ctg) v . (1.2)

The ordered eigenvalues > A2 > A3 > behave as [4]
A1) = e (T0Mh 14 g(e(t-0)An)] (1.3)

whereW, is the energy of thae-th state and\, the distance of\,, to the neighboring energy level.
Effectively the ground and excited states are disentangledleach energy appears in an individual
eigenvalue. The variational method can only be as good asasie of interpolator®; one uses
and different construction principles were proposed [1].

Even with the variational method, the calculation of exti¢ates is a challenging enterprise.
Several non-trivial steps are involved: One has to const@wsuitable basis of interpolators and
select from those a subset which optimizes the quality ofsibeal, i.e., provides the cleanest
effective mass plateaus. For an extrapolation to the iefigtume, continuum and chiral limits, the
signals from several lattices with different size, couglamd mass have to be matched. Here it turns
out that the eigenvectoms™ provide an important marker for identifying the states.aflin in a
fully dynamical simulation hadrons may decay. This leadsaexistence of bound- and scattering
states which have similar energldg and thus mix in the spectral sums (1.1). Because scattering
states have relative momentum, they can be identified byta finlume analysis, since the minimal
possible momentum is inverse proportional to the spatirdof the lattice [5].

Although the methods for solving the technical problemsroézacited spectroscopy calcula-
tion are known, so far the typical analysis produced onlyniaesses for one or two excitations and
most papers are still in the quenched approximation, whadeoms cannot decay.
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There is a long standing tradition of studying problems efbtietical physics in low dimen-
sional quantum field theories. This allows to test new cotscapd techniques in an environment
where often the situation is simpler and, when the lattiaesed, large statistics is easy to generate
(examples for such 2-d studies are [4], [6]). The experigaired in 2-d is then often an important
guideline for the more demanding case of full QCD.

In this paper we follow this tradition and present first résof a lattice study of excited states
in the 2-d Gross-Neveu model [7]. This model is particulatyractive for excited state spec-
troscopy, since in the infinite flavor limit, analytic resufuggest that the masses of the excitations
are integer multiples of the ground state mass. Our projetd at extracting with the variational
method as many excitations as possible and to study theimedependence to learn about scat-
tering.

2. Lattice smulation of the Gross-Neveu mode

2.1 Setting of the calculation

We use the Wilson action for discretizing the fermions ondal&ttice A. The total action is

SEW.O = 3 B DEY WG +5 Y OR?. @.1)

X,yeN XeN

The fields@, ¢ are vectors oN; two-component spinors, one for each flavor, and we use ma-
trix/vector notation for all indices® denotes a one-component real scalar field, which generates
the 4-fermi interaction of the model through a Hubbard48travich transformation. The Dirac
matrix D is diagonal in flavor space and reads

B B +2 ]]-:FVIJ )
DRY) = [m+/g®(n) [ozy — > o Oxifuy - (2.2)
u==+1

The matricegy, are given by the Pauli matriceg, = 01, > = 02, 5 = 03.

The dynamical simulation of the model is done with standaytbridl Monte Carlo methods
and we work withN; = 2,4 and 6 flavors. OukL; x L, lattices have sizek; = 10...24, L, =
32...64 and we typically use four values of the coupling constpahd several different masses
m. Statistical errors are determined with the Jackknifeho@t We find that statistics of a few
hundred configurations per ensemble are sufficient forssizl errors in the one percent range.
Throughout this paper we set the lattice constant equaldcod all results are in lattice units.
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2.2 Interpolators

For our analysis of excited states we use the following sétbr singlet interpolators:

O1(t) = P(xt) 5 Y(x1), (2.3)
Ot) = B(xt) 1o WX 1),
Os(t) = 5 BOx1) 16 WX+ 1) +Wix—n1)],
0u(t) = 5 W0x) Y [WOck 1)+ ylx—n)],
Os(t) = 7 [@Oc+ M)+ Bx—m)] 1 [Wx+nt) + Ylx—np),
Oslt) = 7 [BOCH M) +P(x—m )]y [Wix+n.0) +Yix—n)],
Os(t) = 7 (@O mt) + Bx—mo)] [$x+nt) — gx—np),
O(t) = 7 [@Ox+ M)~ Plx—mo)] s [Wx+nt) — Ylx—np),
1

OlO(t) = Z W(X‘i'mvt) _W(X_ m’t)] 21 [‘#(X+n»t) - W(X_nvt)] :

To project to vanishing total momentum, we sum over the apmiilexx, a step which we suppress
in the list of Eq. (2.3) for notational convenience. The iptdators are built from field variables
at different lattice sites, and the integer valued parame@t@ndm determine how many steps in
spatial direction the field variables are displaced.

Furthermore it is possible to have a relative minus sign betwthe displaced fields which
gives rise to a derivative type of fermion source. In orddrdee the same quantum numbers as the
combination with a plus sign, an additional factoryefappears. In 2-d all products gfmatrices
can be simplified to a singlg,, or 1 due to the algebra of the Pauli matrices.

Our interpolators have negative parity, i.e., they acqaingnus sign under the parity transfor-
mation

P P
Pxt) — Pt = u(=xt) , POt) —PXHT =T(-xt) . (2.4)
Furthermore all interpolators are eigenstates Wite —1 of the charge conjugation

Yxt) S px ) =Cr P, Bxt) - Px)C = —wxTC,  (2.5)

whereC is the charge conjugation matrix obeyi@g,C~* = —y, which can be chosen &= iy».
We stress that in 2-d no angular momentum exists andRrarsdC completely characterize our
flavor singlet states.

In our analysis we use two different choices for the displaeet parametens andm. We set
n = 3 andm = 3 to obtain the 9 interpolator®; ... Oyg as listed in (2.3) (note that there is no
interpolatorO;). A second choicen = 4 andm = 2, gives rise to our interpolato®1; ... Oy
labeled accordingly. Thus we can use correlation matrigdgsavmaximum size of 1& 16.

The implementation of the correlation matrix was checketivim independent programs and
compared to the results for the free case computed from émtmansformation. Within error bars,
the correlation matrix was found to be hermitian as expeclée decay properties of the individual
entries in the correlation matrix are either of the cosh-mn-gype.
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Figure1: The diagonal entrie§;j(t) of the correlation matrix (I.h.s. plot) and the correspomgdkffective
energies (r.h.s) for a 16 64 lattice withg = 0.05,m= 0.05 andN; = 2. The numbers in the legend are the
labels of our interpolators.

3. Results

For a first assessment of the data we consider plots of thelatwrs and of effective energies, a
term which is more suitable than the usual “effective mdssasce some of our states will turn out

to be scattering states, such that their energy does naspand to a single mass. The effective
energies are defined as

e . C()
Wef(t+1/2) = In R (3.1)

wherec(t) is either an individual entry of the correlation matrix, areoof the eigenvalues of the
generalized eigenvalue problem (1.2).

In the |.h.s. plot of Fig. 1 we show the diagonal enti@gt) of the correlation matrix on a
logarithmic scale. The r.h.s. plot contains the correspundffective energies. The data are from
16 x 64 lattices ag = 0.05, m = 0.05 andN; = 2.

It is obvious from the |.h.s. plot that on the logarithmic lscthe correlator<; (t) fall on a
straight line beyond ~ 3, i.e., are dominated by a single exponential. It is, howexery remark-
able, that up ta ~ 20 they have rather different slopes, and only beyond tHaewvey all settle
for the smallest slope. In particular the interpolatorshveitrelative minus sign (derivative interpo-
lators) show a steeper slope compared to the interpolatidhsr@lative plus signs, indicating that
the former strongly couple to excitations. We stress, handhat also the derivative interpolators
couple to the ground state, as can be seen in the effectivgyepits (r.h.s.): They clearly show
a second plateau at the ground state energy for large valuedmerpolatorO;g even seems to
couple to a higher excited state, but settles at the growted shergy beyon~ 13. The fact, that
some of our interpolators couple very strongly to excitadishows that they have a large overlap
with the true physical states. It must, however, be undedstithat the situation in 2-d is particularly
simple due to the lack of angular momentum. All a spatial wiawetion can do is to have nodes
in the single spatial direction. Such wave functions ar@yeabtained by linear combinations of
our interpolators.
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Figure2: Effective energies from the eigenvalues of 2 5 correlation matrix. We compare results from a
14 x 48 lattice (I.h.s.) to the data from 2048 (r.h.s.), both fog = 0.05,m= 0.05 andN; = 2.

Let us now come to the analysis of the results from the vanati analysis. In Fig. 2 we
show the effective energies for the eigenvalues from theigdined eigenvalue problem for a«%
correlation matrix built from the interpolatoi®3, Os,Og, 018 and O19 for g = 0.05, m = 0.05,
N; = 2. We compare two different volumes, ¥#48 in the |.h.s. plot and 20 48 on the r.h.s.

The plots show long reliable plateaus, in particular forttiree lowest states. The two highest
states on the larger lattice (r.h.s.) show noticeable tiewig from a horizontal line, which might
be an effect of mixing with other states through the coroecterm in (1.3).

It is interesting to note that except for the lowest lyingtestécircles) all states show a pro-
nounced volume dependence and are shifted towards smadlagies for the larger volume. This
indicates that the higher states might be scattering statdsh show, as discussed, a pronounced
volume dependence. In a future contribution a more detaitedysis of the volume effects will be
presented, which establishes that indeed the excited sihedg. 2 are scattering states.

Here we would like to focus on a different aspect: For thediniblume analysis it is im-
portant to compare the energies from several differeritéaitolumes. However, when changing
the volume, the spectrum is shifted and it is a non-triviaktto identify the individual states, in
particular since two states might have changed their velgsition. For the purpose of matching
states on different volumes, the eigenvectors of the génedaeigenvalue problem (1.2) are an
important tool. Since they contain the information on howeadesis composed from the individual
interpolators, they serve as a “fingerprint” for an indiatistate.

In Fig. 3 we display the entries of the eigenvectors (norpedlito 1) for the ground state (I.h.s.)
and our highest excited state (r.h.s.) as a functioh @® x 48, g = 0.01, m= 0.05, N = 2).
Also the eigenvector entries form pronounced plateaus lamgosition of the plateau gives the
coefficient for the corresponding interpolator in the lineambination which builds up the states.
These coefficients are surprisingly stable for differerfirees and thus are suitable quantities to
be used in the identification of the states. Furthermoregdle#ficients provide physically relevant
information on how the states are composed: The ground(sta®) is dominated by the operators
O3 andOs, whereas the highest excited state (r.h.s.) receives tamacontributions also from the
derivative interpolators. Such an analysis allows for ditative understanding of the nature of the



Excited state spectroscopy in the lattice Gross-Neveu mode Julia Danzer

7 T
10f o3 n 100 °3
L 8 L

2 A 18 ] 2 | ~ &
2 os- <. - Qo5 * 419
8 [ ] 8. [ 1= 8 =] =] =] 8 =] g
E I ] E | ]
S O0re844844545885458584428454 S oor 8
§ [ T § r Q [S] [S] [S] [S] €] e
g 0 1 gosr 4 4 i 4 i i 2 A
2 lesesgse8988888888888888 2
*1-0} f -1.0:— ,

T T T T s T T T s A S—)

t t

Figure3: Entries of the eigenvectors for the ground state (I.h.sYaadourth excitation (r.h.s) as a function
oft (16x 48,9 =0.01,m=0.05,N; = 2). The numbers in the legend are labels of the interpolators

excited states. In an upcoming paper we will use the methadepted here for a detailed analysis
of the spectrum of excitations in the lattice Gross Neveuehod
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