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The B-meson mass splitting D. Guazzini

1. The effective theory and the chromo-magnetic operator

We consider the classical HQET Lagrangian [1, 2, 3] of a heavy fermion of mass1 m, whose

spinor we indicate with ψh. Keeping a four component notation with P+ψh = ψh we thus have

L = L
stat +L

(1) +O(1/m2) , (1.1)

L
stat = ψhD0ψh , L

(1) = − 1
2m

(Okin +Ospin) = 1
2m

ψh(−
−→
D 2 − 1

2i
Fklσkl)ψh , (1.2)

Okin = ψh
−→
D 2ψh , Ospin = ψh

1
2i

Fklσklψh = ψh
−→σ ·−→B ψh . (1.3)

where
−→
D 2 = DkDk, σkl = i

2
[γk,γl] and Fµν is the QCD field strength tensor. The spin-flavor symme-

try of the static Lagrangian L stat is broken at the O(1/m) by the kinetic and the chromo-magnetic

operators. At this order only the latter is responsible for the spin interaction. In particular the

quadratic mass splitting between the ground state pseudoscalar (PS) and vector (V) heavy-light

mesons assumes the form

∆m2 = M2
V −M2

PS = 4λ2 +O(Λ3
QCD/m) . (1.4)

The parameter λ2 is directly related to Ospin and encodes, at order 1/m, the information upon the

deviations from the static limit, where MV = MPS, stemming from the spin-dependent interactions

inside the heavy-light mesons. The splitting (1.4) can be rewritten in two equivalent ways

∆m2 = 4Cmag(M/Λ)λ RGI
2 +O(Λ3

m
) = 2

MV +MPS

M
Cspin(M/Λ)λ RGI

2 +O(Λ3

m
) , Λ = ΛMS . (1.5)

The coefficients Cmag and Cspin perform the matching between HQET and QCD, and are expressed

as functions of the RGI heavy quark mass M, defined as in [4]. They are computable in continuum

perturbation theory, and a three-loop result is presented in Sect. 3, where a motivation for preferring

the second form in (1.5) is provided. The RGI parameter λ RGI
2 is given by

λ RGI
2 = 1

3
〈B|ORGI

spin |B〉/〈B|B〉 , O
RGI
spin = lim

µ→∞
[2b0ḡ2(µ)]−γ0/2b0O

S
spin(µ) , (1.6)

with γ0 = 3/(8π2) , b0 = (11− 2
3
Nf)/(16π2) , (1.7)

and the zero-momentum static-light meson state |B〉. The operator O S
spin(µ) is related to the bare

operator Ospin by a multiplicative renormalization factor ZS
spin(µ) depending on the adopted scheme

S and a renormalization scale µ , whereas ZRGI
spin (g0) = ORGI

spin /Ospin depends on the bare coupling

only. The relation between the two renormalization factors reads

ZS
spin(µ)/ZRGI

spin = ΦS
spin(µ)/ΦRGI

spin = US(µ) , (1.8)

where

US(µ) = [2b0ḡ2
S(µ)]γ0/2b0exp

{

∫ ḡS(µ)

0
dg

[

γS(g)
β S(g)

− γ0

b0g

]

}

, (1.9)

is the solution of the renormalization group equation in terms of the anomalous dimension γ S and

the β -function in the S scheme with their leading order coupling expansion coefficients (1.7). Here

Φ stands for any matrix element of Ospin, e.g. λ2.

1The details upon the heavy quark mass definition are irrelevant for the present discussion.
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2. Non-perturbative renormalization

We follow the general strategy of [4], and formulate a renormalization condition for Ospin

in a finite volume, which enables us to non-perturbatively compute the renormalization factor

ZRGI
spin . As we are interested in accurate simulations as well as perturbative computations we choose

Schrödinger functional (SF) boundary conditions; see [5] for a recent review. They induce a non-

trivial background field, Fµν , at tree-level. This ensures a good signal in MC simulations at weak

coupling. Further, it means that a 1-loop computation is sufficient to know the renormalization

factor up to and including O(g2
0). Since Ospin does not contain any light fermion fields, we are able

to avoid these altogether in the definition of the correlation functions. It follows that for Nf = 0 we

end up with a pure gauge theory definition (with no relativistic valence quarks) and the observables

are O(a)-improved, once the action is.

In a discretized box of volume L4 we adopt Dirichlet boundary conditions in the 3̂-direction

and periodic boundary conditions in all others. A natural renormalization condition is then

ZSF
spin(L)

L2〈S1(x+ L
2
0̂)Ospin(x)〉

〈S1(x+ L
2
0̂)S1(x)〉

=
L2〈S1(x+ L

2
0̂)Ospin(x)〉

〈S1(x+ L
2
0̂)S1(x)〉

∣

∣

∣

∣

∣

g0=0

, x3 = L/2 . (2.1)

The spin operator S1(x) = 1
1+aδmW

ψhσ1W
†
0 (x−a0̂)ψh(x−a0̂) is introduced in order to have a non-

vanishing trace in spin space. It is a (local) Noether charge and does not need to be renormalized.

W0 is the same temporal parallel transporter appearing in the discretized static action [6], and

δmW is an additive mass renormalization term, whose knowledge is not needed in the following; it

cancels out in the ratios of eq. (2.1).

After integrating the static quark fields out and exploiting the properties of the static propagator

[7, 6], we use the equivalence of all coordinates in Euclidean space to switch to the usual SF

boundary conditions, corresponding to “point A” in [8], and obtain

ZSF
spin(L)

L2〈Tr(P3(x)E1(x))〉
〈Tr(P3(x))〉

=
L2〈Tr(P3(x)E1(x))〉

〈Tr(P3(x))〉

∣

∣

∣

∣

g0=0

=
π

6

1+
√

3

2−
√

3
+O((a/L)4) , (2.2)

with x0 = L0/2, E1 = iF̂01(x), and Dirichlet boundary conditions in time. Here F̂01(x) stands for

the clover leaf discretization of the field strength tensor [9].

Having specified the lattice setup and the renormalization condition, we introduce the step

scaling function σspin(u) via

O
SF
spin(µ) = σspin(ḡ

2(1/µ))OSF
spin(2µ) . (2.3)

It is obtained as the continuum limit

σspin(u) = lim
a/L→0

Σspin(u,a/L) of Σspin(u,a/L) =
ZSF

spin(2L)

ZSF
spin(L)

∣

∣

∣

∣

∣

ḡ2(L)=u ,m=0

, (2.4)

where ḡ2(L) is the SF coupling and the condition m = 0 of vanishing light quark masses plays a

role only in case that the computation is extended to Nf > 0. We performed pure gauge theory

simulations to determine Σspin for different couplings u and resolutions a/L. The continuum limit

results (see Figure 1) allow us to reconstruct the non-perturbative scale dependence of the SF

renormalized chromo-magnetic operator.
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Figure 1: Left: examples of continuum limit extrapolations of Σspin (cf. eqs. (2.4)) for couplings u =

1.243,2.77and3.48. Filled symbols indicate that Fµν was defined as F̂µν with the link variables replaced by

HYP2 [6] links. Right: scale dependence of Ospin in the SF scheme with its associated Λ parameter [8].

By applying eqs. (1.7, 1.8) at weak coupling ḡ2(µ) with the two-loop anomalous dimension

in the SF scheme [10, 11],

γSF(ḡ) = −ḡ2(γ0 + γSF
1 ḡ2 + . . .) , γSF

1 = −0.00236−0.00352Nf +0.00023N2
f , (2.5)

we are able to non-perturbatively connect the low energy regime with the RGI, and arrive at

ΦSF
spin(µ)/ΦRGI

spin = 0.992(29) , at µ = 1/2Lmax , 2Lmax = 1.436r0 [12] . (2.6)

The latter has to be combined with values of ZSF
spin(2Lmax), depending on the bare coupling and

lattice action, to form

ZRGI
spin = ZSF

spin(L)ΦRGI
spin/ΦSF

spin(1/L) (2.7)

for the respective action. The numerical values are well represented by

ZSF
spin(2Lmax) = 2.55+0.16(β −6)−0.40(β −6)2 , 6.0 ≤ β ≤ 6.5 , (2.8)

for the HYP1 [6] action with an error of about 1%. For the other actions see [10].

3. Three-loop matching between HQET and QCD

As pointed out in Sect. 1 the perturbative matching between HQET and QCD plays a very

important role in a precise determination of the mass splitting. Our three-loop computation [13] of

the matching coefficient and the anomalous dimension of the chromo-magnetic operator allow us

to give a reliable final result and estimate its uncertainty.

The coefficient of the chromo-magnetic term needs to be determined by matching to QCD. In

perturbation theory we consider the scattering amplitude of an on-shell heavy quark in an external

chromo-magnetic field, expanded in the momentum transfer q up to the linear term. Denoting it

schematically by A and indicating only the presently relevant dependences, we have the (tradi-

tional) matching condition (with A MS
hqet(µ) = UMS(µ)A RGI

hqet as in eq. (1.9))

Aqcd =
1

mQ

Ccm(mQ)UMS(mQ)A RGI
hqet , A

RGI
hqet = 〈β |ORGI

spin |α〉 . (3.1)
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By working in the MS scheme and with the background field method [14], we arrive at the 3-loop

result for the matching coefficient

Ccm(mQ) = 1+0.6897αMS(mQ)+(2.2182−0.1938Nf)α
2
MS

(mQ)
(3.2)

+(11.0763−1.7495Nf +0.0513N2
f )α3

MS
(mQ)+O(α4

MS
) ,

while for the anomalous dimension of OMS
spin, which enters UMS(µ), we extract

γMS(αMS) = 0.4775αMS +(0.4306−0.0549Nf)α
2
MS (3.3)

+(0.8823−0.1472Nf −0.0007N2
f )α3

MS
+O(α4

MS
) .

Here, formulae are given for the case where the heavy quarks are quenched also in QCD. Their

loop effects are very small [13]. The conversion function Cmag of Sect. 1 is obtained by changing

the renormalization scheme in the effective theory such as to include the finite renormalization Ccm,

while Cspin is constructed by replacing in addition the pole mass, mQ, by the RGI mass, M:

Aqcd =
1

mQ

Cmag(M/ΛMS)A
RGI

hqet =
1

M
Cspin(M/ΛMS)A

RGI
hqet . (3.4)

The resulting equations

Cspin(M/ΛMS) ≡U spin(m∗) =
M

mQ

Cmag(M/ΛMS) ≡
M

mQ

Umag(m∗) (3.5)

then define the anomalous dimensions γ spin , γmag. In all these schemes the renormalization of the

coupling remains untouched: MS. The change from the MS-mass at its own scale m∗ as argument

of U spin to the RGI-mass as the argument of Cspin is convenient since the RGI-masses are the

primary quantities obtained in a non-perturbative lattice computation [4].

The second equation in (3.4) avoids the pole mass which is known to have a bad perturbative

expansion in terms of short distance masses (or M). Thus the anomalous dimension γ spin is expected

to show a better behaved perturbative series which will be reflected in Cspin.

For practical purposes we parametrize the conversion functions Cspin and Cmag in the Nf = 0

theory, graphically represented in Figure 2, in terms of the variable x ≡ 1/ ln(M/ΛMS):

Cspin =

{

xγ
spin
0 /(2b0){1+0.087x−0.021x2} 2-loop γ

xγ
spin
0 /(2b0){1+0.097x+0.115x2 −0.038x3} 3-loop γ

, γ
spin
0 = −2/(4π)2 . (3.6)

These formulae guarantee at least 0.3% precision for x ≤ 0.6. Inspection of Figure 2 shows the ex-

pected bad perturbative behavior of Cmag. We thus focus our attention on Cspin which exhibits very

small higher order contributions in the b-region. The difference ∆Cspin(Mb/Λ) ≈ 10−2 between

the three-loop and the two-loop determination with Mb = 6.76(9)GeV (from [15]) is much smaller

than the statistical error on the spin splitting presented in the following section. Evaluating it with

an estimate (where the four-loop term in the very well behaved γ MS is neglected) for the anomalous

dimension γ spin gives ∆Cspin(Mb/Λ) ≈ 10−2 with respect to the three-loop estimate. We thus claim

an about 1% relative error for Cspin evaluated with the three-loop γ spin for B-physics applications.

For Nf = 4 the behavior of Cmag and Cspin is very similar to Fig. 2 [13].

5



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
7
)
1
0
0

The B-meson mass splitting D. Guazzini

Figure 2: Conversion functions for Nf = 0. Dotted, dashed and solid lines use the one-, two- and three-loop

anomalous dimension. The abscissae of the b- and c-quark [15, 11, 16, 17] are marked by dotted lines.

4. First results for the spin-splitting and outlook

As a first application we take quenched results for the bare λ2 from the literature and exploit

our results (2.7, 3.6). Unfortunately they exist only for β = 6.0, corresponding to a ≈ 0.1 fm,

Ref. [18] : ∆m2 = 0.28(6)(?)GeV2 (2.7,3.6)−→ ∆m2 = 0.38(7)(?)GeV2 , (4.1)

Ref. [19] : ∆m2 = 0.36(4)(?)GeV2 (2.7,3.6)−→ ∆m2 = 0.53(6)(?)GeV2 , (4.2)

where the numbers on the l.h.s. are taken from the corresponding references, performing a per-

turbative renormalization. On the r.h.s. we used the b-quark mass from [15] and the 3-loop de-

termination of Cspin. The uncertainty marked as (?) refers to lattice artefacts and the missing

dynamical quark determinant. The central values are now closer to the experimental mass split-

ting, ∆m2 = 0.497GeV2, but at the moment the large uncertainties prevent us from concluding that

indeed the quenched approximation can give a good estimate of this observable.

As explained in [10], the same renormalization factor applies to spin-dependent potentials

[20, 21], where so far only a perturbative renormalization was possible.

The non-perturbative computation of ZRGI
spin has demonstrated the applicability of the Schrödinger

functional renormalization programme [22, 23] to another difficult case. Quite significant devia-

tions from the perturbative scale evolution are present at low energies, see Figure 1.

With respect to a perturbative estimate, the new ZRGI
spin has a rather big effect. Furthermore,

thanks to the results presented in Sect. 3, which extend [24, 25, 26, 27, 28], we can match the

effective theory and QCD introducing an error in practice negligible in comparison to all other

uncertainties entering ∆m2. It now remains to compute λ bare
2 with higher precision and perform

the continuum limit. However, due to the large amount of statistics needed especially at large cou-

plings, an extension of this method to the dynamical quarks case seems difficult. In this direction,

other, fully non-perturbative, approaches are more promising at present [16, 11, 29, 15].
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