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We study the eigenvalues of Dirac operators in QCD with two mass degenerate dynamical

fermions. The gauge configurations have been obtained with HMC and the so-called Chirally

Improved fermionic action. We compare eigenvalues obtained for the overlap Dirac operator on

these configurations with those for the Chirally Improved (CI) operator (studied earlier). Results

of Random Matrix Theory allow us to determine the chiral condensate.
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1. Dirac operators: DWI, DOV, and DCI

In this work we compare the properties of the eigenvalue spectra of three lattice Dirac oper-
ators, namely the Wilson operatorDWI , the overlap operatorDOV and the Chirally Improved (CI)
operator, denoted asDCI. The well knownDWI (for vanishing mass parameterm) is given by

DWI(m,n) =
4
a

1−
1

2a

±4

∑
µ=±1

(1− γµ)Uµ(n)δn+µ̂,m , (1.1)

using the notationγ−µ = −γµ . The operator violates chiral symmetry, and thus does not satisfy the
Ginsparg-Wilson equation. The second fermionic action studied here is defined throughDOV [1]:

DOV =
1
a

(1− γ5 sign(γ5A)) , (1.2)

with A = 1 s−aDWI and 0< s< 2. For our calculations, we choses= 1.8.
This operator is an exact solution of the Ginsparg-Wilson equation

γ5D+Dγ5 = Dγ5D , (1.3)

and therefore implements chiral symmetry on the lattice. As a consequence of this the spectrum of
DOV lies exactly on a circle, the so-called Ginsparg-Wilson circle.

The third Dirac operator we used,DCI, represents an approximate solution to (1.3). It is
defined [2] as a truncated expansion of a most general solution of the Ginsparg-Wilson equation
into ’paths’ on the lattice of varying length. Taking paths up to infinite length results in an exact
solution. Using this technique we can combine lower computer cost with – approximate, but good
– chiral properties [3].

2. Dynamical Chirally Improved fermions

For the following analysis of the spectral properties of the Dirac operators we use gauge fields
with 2 dynamical flavors of fermions with degenerate masses. These were constructed with an
HMC-algorithm, implemented with the Lüscher-Weisz gauge action and the already mentioned CI
fermionic action. More details can be found in [5].

Due to the ’almost chiral’ properties of this action, our HMC produces gauge-configurations
which frequently tunnel between different topological sectors within oneMarkov chain. Table 1
gives a short summary of the parameters of the gauge fields used in our analysis.

3. Comparison of the spectral properties

Inspection of the spectrum of a Dirac operator is a very good method to seehow well chiral
symmetry is approximated. In Fig. 1, for example, it can be clearly seen that the CI spectrum
(right) deviates less from the ideal Ginsparg-Wilson circle than that ofDWI (left).

Another information the spectrum provides is the topological chargeQtop of a gauge configu-
ration. According to the Atiyah-Singer index theorem it is possible to determineQtop by counting
the zero modes of a Ginsparg-Wilson type Dirac operator according to theirchirality,

Qtop = n−−n+ (3.1)
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run L3×T β1 am a[fm] amAWI #confs.
a 123×24 5.2 0.02 0.115(6) 0.025 73
b 123×24 5.2 0.03 0.125(6) 0.037 52
c 123×24 5.3 0.04 0.120(4) 0.037 55
d 123×24 5.3 0.05 0.129(1) 0.050 40

Table 1: The parameters for the runs used for this work.L3×T denotes the extent of the lattice in units of
the lattice spacinga, amthe bare mass parameter ofDCI, amAWI the quark mass calculated via the axial Ward
identities, andβ1 the first gauge coupling of the set of three LW-couplings used[5]. The configurations are
separated by 10 HMS-trajectories.
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Figure 1: Left: Part of the spectrum ofDWI for configuration nr. 100 of run a. Right: The 50 smallest
eigenvalues ofDCI for the same gauge-configuration.

with n± denoting the number of eigenmodes|v〉 with chirality 〈v|γ5 |v〉 = ±1 corresponding to
eigenvaluesλ = 0. When treatingDCI, due to its approximate nature, these eigenvalues are not
exactly zero, but scatter on the real axis. For the CI operator (and the Wilson operator) one may
relate the number of real modes to the topological sector. We determineQtop by settingn± as
the number of eigenmodes|w〉 corresponding to real eigenvalues with chirality〈w|γ5 |w〉 ≷ 0,
respectively. (For eigenvalues not on the real axis we numerically find〈w|γ5 |w〉 = 0 as expected.)
When comparing the topological charge of a configuration calculated with theexactly chiralDOV

and the approximately chiralDCI, and we find approximate agreement (cf. Fig. 2). The differences
mostly originate from missed eigenvalues far inside the Ginsparg-Wilson circle, which are not
recovered in our method of calculating eigenvalues, namely the program package ARPACK; this
tool only computes the eigenvalues with the smallest absolute value with respectto a defined origin.
When computing eigenmodes of the overlap operator, the situation is different. There the sector
depends on the value ofs added to the diagonal part of the kernel operator (Wilson in our case),
which has frequent inner real modes that are missed in that overlap projection, depending ons.

If one does not take into account any normalization and directly compares eigenvalues ofDCI

with those ofDOV as defined in (1.2), an interesting behavior can be seen. In cases where not only
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Figure 2: Qtop,OV vs. Qtop,CI for the gauge configurations of run a. The numbers state how many configura-
tions show a particular combination of topological charges.

the topological chargeQtop is identical for both operators but also the number of real eigenvalues
n0, the first few eigenvalues are in direct correspondence (cf. Fig. 3,left). However, ifn0 > Qtop

for the CI operator, i.e., if eigenmodes with opposite chirality cancel each other with respect to
Qtop, this correspondence is lost (cf. Fig. 3, right). When put into the overlap operator, the real
modes seem to “move” up resp. down the imaginary axis (although not all of them close to the real
axis), thereby increasing the eigenvalue density near the origin. For a similar observation cf. [4].
This enhancement leads to a higher value for the (bare) chiral condensate when calculated directly
with this definition ofDOV.
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Figure 3: EigenvaluesλOV of DOV and eigenvaluesλCI of DCI in the complex plane. Left: configuration nr.
110 (run (a)):Qtop = −2, n+ = 2 for both operators Right: configuration nr. 100 (run (a)):Qtop = −2, but
n+,CI = 3, n−,CI = 1.
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Figure 4: The average valueipr(λ ) over the complex plane for the gauge configurations of run (a).

4. Localization of eigenmodes

For the CI operator, we also calculated the inverse participation ratios (ipr) of the eigenmodes
for small eigenvalues, given by

ipr(λ ) = V ∑
x

(

∑
α,c

v(x,α,c)∗v(x,α,c)

)2

. (4.1)

The inner sum is over the color indicesc as well as the Dirac indicesα , the outer sum over the
space-time indicesx. V denotes the space-time volume in lattice units, andv(x,α ,c) the eigenmode
of DCI corresponding to the eigenvalueλ . This quantity is a good measure for the localization
properties of one eigenmode, withipr(λ ) = 1 for a non-localized mode andipr(λ ) =V for a mode
concentrated on only one lattice point. To compute a suitable average over one HMC-run, we
divided the complex plane into a grid and calculated the averageipr as

ipr =
1
n ∑

λ∈∆λ

ipr(λ ) , (4.2)

with ∆λ being one square in the complex plane andn the number of eigenvalues in∆λ .
In Fig. 4 we see, as expected, thatipr increases along the real axis, and in general is higher

for eigenvalues inside the Ginsparg-Wilson circle (cf. also [4]). ForDOV one expectsipr to be
symmetric with respect to the real axis, but this is not the case forDCI since it is not a normal
matrix operator.

5. Comparison with random matrix theory

As the overlap operator implements chiral symmetry on the lattice exactly, the distribution of
the smallest eigenvalues (in leading order ChPT) is analytically given by the well known results of
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random matrix theory (RMT) for the chiral gaussian unitary ensemble [6],at least in theε-regime
in the microscopic limit. Following the procedure in [7], where these calculationswere done on
the same configurations forDCI, we thus compare our distributions forDOV to RMT.
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Figure 5: The cumulative distribution given by RMT compared to the distribution of the smallest eigenvalues
of the overlap operator. Left:Qtop = 0, and k=1 (smallest eigenvalue); Right:Qtop = 0, and k=2 (second
smallest eigenvalue), both for run (a).

A similar analysis for dynamical overlap configurations was done in [8, 9] and for 2-flavor
staggered configurations in [10]. For the fits that determine the chiral condensateΣ, we use the
cumulative eigenvalue distributions and look at the smallest and second smallest eigenvalue in the
topological sectorsQtop = 0 and|Qtop| = 1.

The values forΣ for run (a)–(d), determined from the spectra ofDOV, are given in Table 2.
The fit was done using the Kolmogorov-Smirnov test, the errors computed viastatistical bootstrap.

6. Problems and issues

The resulting values for the condensate still have to be renormalized. This can be done by
determining the renormalization constantZS by standard tools of non-perturbative renormalization.
In the case ofDCI the renormalization constants for the dynamical case have been computed in
recent work [11]. ForDOV, the situation is more involved, and the renormalization depends on the
value ofs. The weak coupling expansion for small momentap has a behaviorDOV = i γµ pµ/s+

O(p2). This changes for the interacting case in a non-trivial way. Comparing theresults for the
bare condensate for CI [5] with overlap, we expectZS,OV = ZS,CI ΣCI/ΣOV ≈ 0.64ZS,CI.

The dependence on the physical quark mass is also worth being explored. To this point we
assume that the AWI-mass computed for our dynamical gauge fields is the sameas the quark mass
entering the RMT-fits. In [10] the overlap quark mass has been determinedusing the distribution
of topological charge, and found to be different from the value calculated for the underlying gauge
fields. We do not have sufficiently high statistics to follow this approach, butnevertheless the sea
quark mass of the overlap operator should be adjusted, such that the pionmass (or the AWI-mass)
computed with the overlap operator agree with the pion mass of the CI operator.
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HMC run k |Qtop| #confs. −(Σ)1/3 MeV1/3

a 1 0 12 338(6)
1 1 25 332(3)
2 0 12 310(3)
2 1 25 319(3)

b 1 0 7 353(10)
1 1 8 350(9)
2 0 7 362(5)
2 1 8 330(6)

c 1 0 17 350(6)
1 1 12 346(9)
2 0 17 340(3)
2 1 12 322(5)

d 1 0 5 365(18)
1 1 11 370(10)
2 0 5 348(14)
2 1 11 346(2)

Table 2: Results for the value of the bare condensateΣ, for all runs of the HMC. The value ofk refers to the
smallest (1) or second smallest (2) (imaginary part of the) eigenvalue.
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