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1. Motivation

Although they have desirable theoretical properties, Ginsparg-Wilst) (&] fermion for-
mulations are both computationally and conceptually demanding when it comes tiatiinms
including effects of dynamical quarks (see eg. [2, 3, 4, 5]). Onetea@jrcumvent this problem is
the mixed action approach: the ensemble production is performed with aeglatieap fermion
discretization and GW fermions are only used for calculations in the valemtersThis allows to
speed up the simulation while retaining most advantages of the GW fermioihsasuleir exact
chiral symmetry and the resulting absence of complicated operator mixingieirceacalculations.
However, because valence and sea quarks are different, the thdieng from unitarity violations.
As aresult, the chiral perturbation theory formulae needed to extrapdiice @ata in quark mass
and lattice spacing become more involved and have more free parameters.

2. Action and algorithm details

2.1 Choiceof action

To generate the configurations we use the Lischer-Weisz gauge &jtamd[stout-smeared
[7] O(a)-improved [8] Wilson fermions, where the improvement coefficiesyt is taken at tree
level. The combination of link-fattening ar@(a) improvement greatly reduces chiral symmetry
breaking effects [9]. This action has an improved scaling behaviorauthertheoretically leading
O(asa) contributions will, in practice, be negligible and the scaling to the continuum laeké
the theory had onlyD(a?) cut-off effects [9, 10]. We use 2, 3 and 6 levels of stouting and skvera
B-values in order to check the scaling behavior explicitly. The smearing wil significantly
reduce the appearance of small eigenvalues related to short distéifecsar This will improve
the convergence rate of the solvers, as discussed in section 2.3. hl¢hee/sector we use overlap
fermions [11] with “UV filtering” to improve the locality without altering = 1 [12].

2.2 Choice of parameters

Setting the strange sea quark madshe approximate determination of the strange mass is
done byN; = 3 simulations: at a givefi we search for the quark mass where the relation

Mps/my = /28 —m2/m, (2.1)

is satisfied. We have determined tBedependence of this approximate strange mass in a fairly
large rangef8 = 2.9 — 3.8) and it turns out to be smooth.

Matching sea and valence quarkshe different discretizations in the sea and valence sectors
lead to discretization error induced unitarity violating effects. As far asdaoargy properties are
concerned, these effects, as well as those associated with any mismiatelbrbsea and valence
quark masses, can be accounted for with the appropriate version of autted partially quenched
chiral perturbation theory (MAPQXPT), as described in the accompgrmrioceedings contribu-
tion by L. Lellouch [13]. Accordingly, a precise matching of the sea andneaesector is not
needed. Still, in order to remain relatively close to the unitary situation, wedraaset of valence
data where the pion and kaon masses of the two sectors are approximatdigenatc

Overview of simulation pointA brief summary of our ensembles is given in Tab. 1.
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B | a[fm] my[MeV] L3.T | overlap inversion
3.3 | 0.136 360 18-64 DONE
310 24.64 DONE
250 24 .64 DONE
3.57| 0.088 570 23.64 DONE
490 24.64 DONE
410 28.64 DONE
300 32.64 DONE
190 48 .64 DONE
3.7 | 0.069 520 3%.96 DONE
400 32.96 RUNNING
290 4% -96 DONE

Table1: Nf =2+ 1 simulation points. The last column indicates the statub®bverlap inversions.

2.3 Dynamical fermion algorithm

We aim to run simulations with 2+1 flavors, with pion masses approaching trsgcphpoint.
To simulate the two light flavours we use the Hybrid Monte Carlo (HMC) [14patgm with
even/odd preconditioned [15] clover fermions. However, in the reginmglof quark masses the
standard HMC suffers from “critical slowing down”, that is on top of thereased computational
cost per trajectory, the autocorrelation times grow significantly. Severabiwements over the
standard version have been proposed, many of which can be comWieade the following ones:

e multiple time-scale integration (“Sexton-Weingarten integration scheme”) [1i6¢ table to
run the computationally most demanding part of the simulation (the inversion digtite
fermion matrix) at a larger time-step then the comparatively less costly part,

e mass preconditioning (“Hasenbusch trick”) [17], to reduce jumps in theifaic force and

e Omelyan integrator [18] to reduce the energy violations during the Mole@yaamics
(MD) part of the HMC.

The strange quark is included via the RHMC algorithm. This method is exadtighty efficient
when combined with the Sexton-Weingarten integration scheme [19].

2.4 Mixed precision solver

The most time consuming part, both in valence and see sector calculationgjistmeplete)
fermion matrix inversion by means of a solver. In order to maintain reversilihig&MD part of the
HMC algorithm has to be performed in double precision. The same holdsarypedpagator cal-
culations at small quark masses, due to the large condition number of theriermatdx involved.
However, this does not imply that each fermion matrix multiplication needs to be idafiouble
precision. In the valence sector we wish to solve

Dx=b (2.2)
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Figure 1. Performance of CG-64 (double precision, red squares) angan&@mixed precision, blue cir-
cles) during the fat clover MD trajectory (left). Chirallygected CG (double precision) versus relaxed
GMRESR(SUMR-32) (mixed precision) during overlap progagaalculations (right).
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Figure 2: Strong scaling analysis of the Wilson fermion matrix muitiation on a global 48x 96 lattice.
Left: performance of the single and double precision keimgkercentage of machine peak, as well as their
memory footprint for 1024 up to 8192 nodes (2048 to 16384 QPUse gray shaded area indicates the size
of the L3 cache. Right: the same scaling analysis and keerémance in TFlops.

with D the overlap or clover operator to construct the correlator. In the starsee wish to solve
D'Dx=b (2.3)

for the clover action to calculate the fermionic force within the MD. To acctddt®e solvers it is,
in either case, possible to use a single precision versi@within a mixed precision solver. We
find that there is basically no penalty in terms of the iteration count; the incofdlse number of
forward multiplications is well below 10%.

How a single precision calculation can be used to accelerate a solver is arugidrent in
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Figure 3: AH (left), CG count (center) and plaquette (right) for the flater action am; = 190 MeV.

the valence sector where we use the relaxed GMRESR [5] algorithm wittuasiee SUMR [4]
preconditioning. In this scheme, the SUMR is merely used to calculate a lowsipremversion.
Therefore, the SUMR can be coded in single precision (except foap&bms), even if the GM-
RESR requires double precision accuracy. Since almost all matrix multiplisati@nperformed
within the SUMR, the whole solver is dominated by the single precision matrix multiplicatio
performance, resulting in a significant speedup (see Fig. 1). The gdireito three effects:
e On a generic computer architecture the peak performance of the singisigmesolver will
be larger than that of the double precision version.
e The performance of the solver is usually bound by the bandwidth to thensysmory.
Thus, on the same architecture, usually twice as many single precision thiale goecision
numbers can be loaded from system memory per unit time.

e The single precision matrix vector multiplication routine requires half the memotkeof
double precision version. The inverter will fit into the cache for largealltattice sizes and
the range in which the algorithm scales with the number of nodes will improegige?2).

2.5 Phase structure and algorithm stability

During the HMC evolution a number of observables is monitored to detect aieyntmal in-
stability of the algorithm. In Fig. 3 the energy violatidid, the CG iteration number needed to
reach the residue tolerance and the plaquette are shown for the run @ithel®pion mass. After
the thermalization a stable distribution can be seen. When attempting a “therri@lioytbe pion
mass one finds no signs of a hysteresis. Moreover, “cold” and “hat5sjaickly lead to the same
plaguette (see Fig. 4). Altogether, it seems that we are far from anytj@dteuk phase transition.

2.6 Overall performance and strong scaling analysis

Several improved versions of the HMC algorithm can be found in the litexatss shown in
the left panel of Fig. 5, our algorithm is compatible with the performancertegin [20, 21].

The right panel shows the good scaling properties of our HMC variety thghnumber of
CPUs of the Blue Gene/L of the Jilich Supercomputing Centre (JSC). Wittirsethe curve is
perfectly linear, very much as for the Wilson kernel shown in Fig 2. Th#boline is that we can
simulate dynamical quarks in a regime well below 250 MeV.
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Figure 4: Thermalized plaquette versus; (left) and cold versus hot start plaquettgBat 3.5 (right).
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Figure 5. Left: updated “Berlin Wall” plot — full circles correspona the pre-2005 dynamical Wilson
simulations, solid squares represent the algorithm of, [@d¢n squares are this work. Right: Scaling of our
algorithm with the number of CPUs.

3. Outlook

To illustrate the statistical quality of our results, Fig. 6 presents effectives mlaseaus of
charged pions, kaons and non-singepseudoscalar mesons, for our lightest sea pigh-at3.57
(cf. Tab. 1) — both with clover (left) and overlap (right) valence quarks

The performance and stability of our simulations, the statistical accuraay oésults, as well
as our growing understanding of their chiral behavior [13] are vepynising and we look forward
to presenting phenomenological results, with controlled extrapolations tdisecpl point of 2-1
flavor QCD, in future publications.
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Figure 6: Mass plateaus for clover (left) and overlap (right) pioremhs and etas at; = 190 MeV.
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