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We present preliminary results for the chiral behavior of charged pseudo-Goldstone-boson masses

and decay constants. These are obtained in simulations withNf =2+1 flavors of tree-level,O(a)-

improved Wilson sea quarks. In these simulations, mesons are composed of either valence quarks

discretized in the same way as the sea quarks (unitary simulations) or of overlap valence quarks

(mixed-action simulations). We find that the chiral behavior of the pseudoscalar meson masses in

the mixed-action calculations cannot be explained with continuum, partially-quenched chiral per-

turbation theory. We show that the inclusion ofO(a2) unitarity violations in the chiral expansion

resolves this discrepancy and that the size of the unitarityviolations required are consistent with

those which we observe in the zero-momentum, scalar-isotriplet-meson propagator.
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1. Introduction

The objective of our collaboration is to calculate hadronic observables which are relevant for
determining fundamental quark properties, such as quark masses or quark flavor-mixing and CP-
violation parameters, and to do so with controlled extrapolations to the physicallimit of Nf =2+1
flavor QCD, whereMπ ≃ 135MeV, the lattice spacinga vanishes and the volume is infinite. To
achieve that goal we consider two approaches. In both, the seas are composed ofNf =2+1 flavors
of tree-level,O(a)-improved Wilson (W) quarks [1]. We perform “unitary” simulations wherethe
valence quarks are discretized in the same way as the sea quarks. We alsoperform “mixed-action”
calculations, with overlap [2 – 4], Ginsparg-Wilson (GW) [5] valence quarks. In the latter, the
valence sector possesses a full, continuum-like chiral symmetry [6] which greatly simplifies the
renormalization of electroweak operators, such as those encountered inneutral kaon mixing. It
also guarantees that matrix elements are automaticallyO(a)-improved, to the extent that the sea
quarks are. As discussed by Stefan Krieg at this conference [7], recent advances have allowed us
to performNf =2+1 simulations, for instance, down toMπ ∼ 190MeV with a ∼ 0.09fm and in
cubic volumes of sideL ∼ 4.2fm. Thus, we expect to be able to reach the near-continuum chiral
p-regime of Gasser and Leutwyler without the conceptual problems of staggered fermions [8, 9].
This means that we should be able to extrapolate lattice results to the physical point in a model-
independent way, by using Wilson [10 – 13], partially quenched (PQ) chiral perturbation theory
(χPT) [14 – 17] for the unitary simulations, and mixed-action (MA) PQχPT [18, 13, 19] for the
GW-on-W simulations.

One of the drawbacks of using a mixed-action approach is the presence of discretization-
induced unitarity violations. Fortunately, it should be possible to account for the low-energy man-
ifestations of these violations with MAPQχPT. We present here preliminary results for the quark-
mass dependence of the masses and leptonic decay constants of the pseudo-Goldstone bosons
(PGBs) of chiral symmetry breaking. In particular, we investigate the effects of unitarity violations
in these quantities, as obtained in our mixed-action simulations, and attempt to correlate these ef-
fects with those which we observe in the scalar, isotriplet,a0 propagator, where they are expected
to be particularly large [20]. Of course, our study of the masses and decay constants of the PGBs
is primarily motivated by the very interesting phenomenology they give rise to. They allow the
determination of a variety of fundamental quantities, such as light quark masses, the ratio of CKM
elements|Vus/Vud| [21] and important LO and higher-order low-energy constants (LECs)of the
effective chiral Lagrangian. However, we postpone the presentationof results for these quantities
to later publications.

2. Finite-volume mixed-action PQχPT and unitarity violations

As shown in [20] for the case ofNf degenerate flavors, the propagator of thea0 is affected by
potentially largeO(a2) unitarity violations in a mixed-action scenario. For the case which interests
us, withNf =2+1, to simplify expressions we suppose that the light sea (ℓ) and valence (v) quark

masses are tuned such that masses of the corresponding PGBs are equal: Mvv = Mℓℓ
·≡ Mπ . We

denote the strange sea quark bys, and byMss the mass of charge pseudoscalar mesons composed
of two valence quarks with the mass of thes. 1 Then, LO MAPQχPT gives for the zero-momentum,

1From now on we call these mesons “non-singletss̄” pseudoscalar mesons.
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a0 propagator:

Ca0(t,λ ) ≡ Z2
S(g0,aλ )a3∑

~x

〈q̄2q1(~x, t)q̄1q2(0)〉 (2.1)

t→+∞−→ B2(λ )

L3

{

CKK̄(t)+
2
3

Cπη(t)−2
a2∆
M2

π
(Mπ t +1)Cππ(t)

}

,

where the valence quarks are chosen to be degenerate, withm1 = m2
·≡ mv, and where we have

assumed, for simplicity, that the time and space extent of the lattice are infinite. The quantityB is
the condensate over the square of the decay constantF . ZS(g0,aλ ) is a renormalization constant
for scalar densities andλ is a QCD renormalization scale. The functionsCXY(t) denote the zero-
momentum propagators of the two-particle states,XY, and are given byCXY(t) ≡ exp

[

−(MX +

MY)t
]

/(4MXMY) at LO. There are two physical contributions, coming from intermediate two-kaon
andπη states. The unitarity violations are of ordera2 and are proportional to a quantity∆, which
has mass dimension four. These violations only vanish in the continuum limit. Moreover, they are
exponentially and polynomially enhanced int, also compared to the contribution from thea0 not
shown in Eq. (2.1). At asymptotic times, the unitarity violations are the dominant contribution.

Unitarity violations also affect PGB masses and decay constants, but only at NLO. Let us
consider a pseudoscalar meson composed of two distinct quarks with masses m1 andm2. Then,
according to NLO MAPQχPT, the square of this meson mass has the following generic form:

(M2
12)

NLO
Ω = (m1 +m2)B

{

1+ 1
(4πF)2

[

PQ-logs(µ,M11,M22,Mℓℓ,Mss)

+(2α6−α4)(µ)(2M2
ℓℓ +M2

ss)+(2α8−α5)(µ)M2
12+FV

+aβM +a2∆×{UV-logs(µ,M11,M22)+ γM(µ)}
]}

,

(2.2)

whereB and∆ are defined after Eq. (2.1); “PQ-logs” and “UV-logs” denote partially-quenched
and unitarity-violating quenched-like logarithms, respectively;µ is the renormalization scale in
the effective theory and, in Eq. (2.2), the quark masses and theB must both be either renormal-
ized in the same scheme in QCD or bare;γM(µ) is an a priori unknown counter-term; the LECs
αi are related to the original Gasser and Leutwyler constants throughαi(µ) ≡ 8(4π)2Li(µ); FV
stands for finite-volume corrections;βM is a mass-dimension three quantity which parameterizes
O(a) discretization errors and whose parametric size will be specified below. Note that in fits to
lattice results obtained at a single lattice spacing, the discretization errors proportional toaβM and
a2∆γM(µ) get absorbed into the LO LEC,B.

In applying the general form of Eq. (2.2), it is useful to distinguish threecases of interest.
In the continuum or in the case of GW valence on GW sea quarks,m1 andm2 can be taken to
be the Lagrangian masses and∆ andβM identically vanish, i.e. there are no unitarity violating
nor O(a) discretization errors. In our W-on-W unitary simulations, we takem1 and m2 to be
the “measured” axial Ward identity (AWI) masses. Moreover, the constant βM is O(Λ3

QCD) if the
fermions used are straight Wilson fermions,O(αsΛ3

QCD) if they are tree-levelO(a)-improved as
they are in our simulations, or zero if they are non-perturbativelyO(a)-improved. Finally,∆ ≡ 0
and discretization-induced unitarity violations are absent. In the mixed-action, GW-on-W case,m1

andm2 can be taken to be the valence, overlap Lagrangian masses.βM has the same parametric
size as for the unitary simulations, depending on the level of improvement of the sea. However, in
the mixed-action case,∆ does not vanish a priori. Thus, we expect that meson masses will suffer
from discretization-induced unitarity violations at finitea.
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The NLO expression for the decay constant,F12, of a charged pseudoscalar meson is simi-
lar in form to Eq. (2.2), with the factor(m1 + m2)B replaced byF and where the “PQ-logs”and
corresponding counter-terms and finite-volume corrections are changed to the partially-quenched
expressions appropriate for decay constants. The corresponding general form applies to the three
cases discussed above in much the same way, with the substitutionsβM → βF andγM → γF . The
main difference appears in the GW-on-W case, where the mixed-action unitarity violations propor-
tional toa2∆ are purely valenceSU(3)-flavor breaking, and do not depend onµ.

3. Results for the a0 propagator and the charged PGB masses and decay constants

The results discussed below were obtained from simulations which were described at this con-
ference by Stefan Krieg [7]. We recapitulate here only the main ingredients, omitting algorithmic
considerations. The gauge action used is tree-level Symanzik improved [22]. The sea quarks are
described by six-step stout-smeared [23], tree-levelO(a)-improved Wilson fermions [1]. For the
unitary, W-on-W simulations, the valence quarks are discretized in the same way. In the GW-on-W,
mixed-action case, valence quarks are three-step HYP-smeared [24] overlap fermions [2 – 4], with
a negative mass parameterρ = 1.

We have performed five, 2+1 sea-flavor simulations at a lattice spacinga ∼ 0.09fm (β =

3.57). In these simulations, the mass of the charged pions composed of two lightsea quarks are
Mπ ∼ 190, 300, 410, 490 and 570MeV. To keep finite-volume errors small, all simulations are
performed in cubic three-volumes with sidesL such thatMπL ≥ 4. The strange quark mass used
in our simulations is slightly overestimated: with such a strange quark, the mass ofa kaon, when
extrapolated in light-quark mass to the physical point, is approximately 7% higher than the physical
kaon mass. There are 34 gauge configurations atMπ ∼ 190MeV, 68 atMπ ∼ 300MeV andO(100)
at the three other simulation points. In the mixed-action case, the overlap quark masses are chosen
such that the mesons which they compose are approximately degenerate with those composed of
the corresponding Wilson sea quarks. AtMπ ∼ 190 and 300MeV, we have a second overlap valence
strange quark whose mass is approximately 30% smaller than that of the strange sea quark.

We begin with preliminary results for the zero-momentum,a0 propagator,Ca0(t), defined in
Eq. (2.1). In Fig. 1 we plot the unrenormalized propagators,Cbare

a0
(t), as a function of Euclidean

timet, obtained in the two GW-on-W simulations with the lightestu andd quarks. The propagators
go negative at relatively short times and then asymptotically go back up to zero. Moreover, the
effect is less pronounced for the simulation with the more massive quarks, atrend which persists
as one increases theu andd quark masses further. This behavior is qualitatively consistent with
the prediction of MAPQχPT given in Eq. (2.1), assuming∆ > 0. The agreement can be made
quantitative also. To verify this, we perform fits of the propagators, at asymptotic timest, to the PQ
and FV generalization of Eq. (2.1) for the bareCa0(t). The fits have only one parameter, namely
a4∆. For the pre-factor(B/ZS)

2, we takeM2
12/(m1 + m2), whereM12 is the “measured” meson

mass andm1,2 are the bare masses of the GW quarks which compose it. The kaon, pion andη
masses which appear in the expression forCbare

a0
(t) are constrained to take on the values obtained

from prior fits to kaon and pion two-point functions. These mesons are composed of a sea and
a valence quark. We obtain their masses by combining the corresponding valence-valence and
sea-sea masses at LO in the chiral expansion. This means that the parameter a4∆ that we fit here
contains contributions from anO(a2), mixed-action operator in the chiral Lagrangian. Fortunately,
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Figure 1: Bare, zero-momentum propagator of thea0 as a function of time over half the time extent of
our lattices, as obtained in our two GW-on-W simulations with the lightestu andd quarks. The solid curves
represent our best fits to the partially-quenched and finite-volume generalization of Eq. (2.1) in the fit region,
and the dashed curves their extensions to earlier times.

if the same prescription is used for obtaining valence-sea meson masses which appear at NLO in
quantities such asM2

12 or F12, the unitarity violations there will be parameterized by the samea4∆.

The one-parameter fits toCbare
a0

(t) for Mπ ∼ 190 and 300MeV are performed fort/a in the
range[12,32], wheret/a = 32 is the midpoint of our lattices in both cases. The results of these fits
are plotted in Fig. 1. As the figure suggests, both fits have goodχ2/do f. The values obtained for
the unitarity-violation parameter area4∆ = 0.015(6) and 0.024(10), respectively, forMπ ∼ 190 and
300GeV, and are thus consistent. For the lattice spacing at which the simulationsare performed,
these values correspond toa

√
∆ ∼ 0.27GeV and 0.35GeV. Sincea

√
∆ competes with pion, kaon

andη masses in the chiral expressions forM2
12 andF12 in the mixed-action case, it is clear that

these unitarity-violating contributions cannot be neglected a priori.

We now turn to an analysis of the GW-on-W decay constant. We begin with this quantity,
because we use the extrapolatedaFπ to determine the lattice spacing as well as to normalize cor-
rections in chiral expressions with factors of(4πaFπ)2. aF12 is obtained from the pseudoscalar
two-point function using the AWI. Thanks to the chiral symmetry of the overlap, valence quarks,
no renormalization is required. This is a simple example of the simplifications brought about by
the use of a mixed action with chirally symmetric valence quarks.

There are 21 lattice points foraF12, of which 5 correspond to charged “pions”, 7 to “kaons”
and 9 to “non-singletss̄” pseudoscalar mesons. We fit these results to the NLO chiral expression
described in Sec. 2. So as to remain, as much as possible, within in the range of applicability of
NLO χPT, we include in the fit only the 4 lightest pion and 4 lightest kaon points, withMπ ≤
500MeV andMK ≤ 590MeV. The fit has four parameters, which areF , α4(Mη), α5(Mη) anda4∆.
Since thea0 propagator is more sensitive to unitarity violations than are the decay constants, we fix
a4∆ to the value 0.024(10), through a Gaussian prior in theχ2. The NLO expression describes the
data well. Moreover, the resulting value ofa4∆ is 0.025(8), confirming that the chiral behavior of
the decay constants is consistent with the presence of unitarity violations of the size observed in the
a0 propagator. The value ofaFπ obtained from a self-consistent extrapolation to the physical point,
using the infinite-volume, continuum fitted function, yields a lattice spacing ofa = 0.088(1) fm,
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Figure 2: The bare condensate ratio as a function of squared sea-pion mass, in lattice units, for the unitary
simulations (left) and for the mixed-action simulations (right). The vertical scales in the two plots are
only equal up to a ratio of renormalization constants. The three sets of data (circles) in the W-on-W case
correspond, from top to bottom, to pion-like, kaon-like andnon-singletss̄-like pseudoscalar mesons. In the
GW-on-W plot, there are one additional kaon and two extrass̄points at the two smallestMℓℓ’s, corresponding
to the additional valence strange quark that we consider in these simulations. The fits to Eq. (2.2) are plotted
as line-segments around each fitted point. The physical curves are obtained from the fits by removing the
FV effects, and in the mixed-action case, the partial-quenching effects and unitarity-violating logs. The pion
curves are obtained by settingM11=M22=Mℓℓ andMss=Mphys

ss , the latter being the physical, non-singletss̄
pseudoscalar meson mass; the kaon curves, by settingM11=Mℓℓ andM22=Mss=Mphys

ss ; theSU(3) curves, by
settingM11=M22=Mss=Mℓℓ. The vertical dotted lines mark, from left to right, the chiral limit, the physical
pion and the physical kaon points.

where the error is statistical.

Next we consider chiral fits to the unitary W-on-W results for the condensate ratioaBbare
12 ≡

(aM12)
2/(am1 + am2)

bare
AWI . The lattice results for this quantity are plotted in Fig. 2, as a function

of the squared sea-pion mass,M2
ℓℓ. The different sets of points correspond to “pions”, “kaons”

and “non-singletss̄” pseudoscalar mesons. We fit these results to the NLO expression of Eq.(2.2)
with ∆ ≡ 0. We include in the fit only the six points withMπ ≤ 500MeV andMK ≤ 590MeV.
Here, the fit has only three parameters, namelyB, (2α6−α4)(Mη) and(2α8−α5)(Mη). The NLO
expression describes the chiral behavior ofaBbare

12 very well.

We now turn to the condensate ratio obtained in the mixed-action, GW-on-W simulations.
Here,aBbare

12 ≡ (aM12)
2/(am1 +am2)

bare, whereM12 is the valence meson mass andmbare
1,2 are the

corresponding bare overlap Lagrangian masses. The results for this quantity are plotted in Fig. 2,
again as a function ofM2

ℓℓ. As the plot indicates, the behavior ofaBbare
12 here deviates significantly

from that obtained in the unitary case. Moreover, some of the features ofthis behavior, such as
the large increase ofaBbare

12 for the “pion” points at smallM2
ℓℓ, cannot be explained with only

continuum PQ chiral logarithms: a divergent term at smallM2
ℓℓ appears to be required. Fortunately,

such a contribution is provided by the unitarity violations discussed in Sec. 2 and exhibited in
Eq. (2.2). We thus fit the lattice results to the NLO expression of Eq. (2.2), including the unitarity
violating term proportional toa2∆. As for the decay constant fit, we fixa4∆ to the value 0.024(10),
obtained from thea0 propagator, through a Gaussian prior in theχ2. There are four parameters
in the fit, one more than in the W-on-W case. These areB, (2α6 −α4)(Mη), (2α8 −α5)(Mη)

and a constraineda4∆. Again, only the eight points withMπ ≤ 500MeV andMK ≤ 590MeV are

6
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included. The description of the condensate ratio given by our NLO chiral expression is good. The
value ofa4∆ returned by the fit is 0.020(6). As already noted after Eq. (2.2), in a fit performed
at fixed lattice spacing, the discretization error proportional toγM(µ) gets absorbed intoB, which
thereby acquires a spuriousχPT µ-dependence. Of course, this dependence will be eliminated,
along with all other discretization errors, when the renormalized values ofB, obtained at different
lattice spacings, are extrapolated to the continuum limit. The value ofµ chosen here isMη . A
lower value will raise the physical curves whereas a larger one will lowerthem. It is worth noting
that this spuriousµ-dependence cancels at NLO in ratios such asms/mud or 〈q̄q〉Nf =2/〈q̄q〉Nf =3.
Moreover, it only affects the fitted LECs(2α6−α4)(Mη) and(2α8−α5)(Mη) very mildly. We
find very good agreement between the GW-on-W and W-on-W results forthese quantities.

These observations, together with the other results reported on here, suggest that unitarity
violations are present in our mixed-action results, and that we can subtract them with MAPQχPT.
Of course, simulations at other lattice spacings are required to confirm this conclusion.
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