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1. Introduction

The lattice calculation of the hyperfine splitting in charmonium is currently still showing a
discrepancy with the experimental value of 117 MeV. The discrepancy is large (30-40%) in the
quenched case [1, 2]. It is reduced to around 10% in dynamicalstudies with improved actions [3, 4],
but its origin is still uncertain. A possible explanation could be that even the current state-of-the-
art lattice action formulations do not reproduce the quark dynamics within the charmonium states
sufficiently accurately for the purpose of this calculation. Another possibility which could account
for the discrepancy (or at least part of it) is the neglected contribution of the disconnected diagrams
in the lattice computations. These diagrams could contribute to the masses of both the vectorJ=ψ
and the pseudoscalarηc, and thus affect the hyperfine splittingMJ=ψ �Mηc. Perturbatively, the
contribution of these diagrams in charmonium is expected tobe small due to the OZI suppression,
especially for the vector state. However, non-perturbative effects, such as theUA(1) anomaly [5]
and glueball mixing, might enhance it enough so that it becomes a non-negligible fraction of the
hyperfine splitting.

In this work, we present our preliminary results of the effort to test this possibility and deter-
mine the contributions of the disconnected diagrams. Previous calculations [6, 7] using two-flavor
gauge ensembles very roughly estimate the contribution to be within�20 MeV. They both con-
firm that there are significant difficulties in obtaining a signal for the disconnected diagrams due
to noise, especially for heavy quarks. Our calculations areperformed on an ensemble of 505, 2+1
flavor MILC lattices [8], generated with the improved Asqtadaction [9]. For this ensemble the
ratio of the masses of the light and heavy quarks ismud=ms = 0:1. The charm quarks are simulated
using the Fermilab interpretation of the clover action withκc = 0:127 tuned to the physical charm
quark mass. The disconnected diagrams are calculated stochasticly with 12 spin and color diluted
sources.

We employ several methods for improving our calculation in comparison with previous works.
First, our lattice volume is 403� 96, which is much larger than in [6, 7] and our lattice scale,
a� 0:09 fm, is finer. In addition to these improvements we use the unbiased subtraction technique
[10] in the stochastic estimators. The success of this technique depends on the fast convergence
of the hopping parameter expansion used in the subtraction.Considering thatκc is small for the
charm quark, we use the terms of the expansion only up to thirdorder inκc, which reduces the
standard deviation of the disconnected correlator by abouta factor of 4. The last and most impor-
tant improvement is that we study the point-to-point (PP) disconnected correlators instead of the
traditional time-slice-to-time-slice (TS) ones. As a result, the standard deviation of the signal is
reduced about three orders of magnitude.

2. Lattice formulation

The disconnected part of the flavor singlet TS correlator is calculated as:

D(t) = cΓ hL(0)L�(t)i ; where L(t) = Tr(ΓM�1) (2.1)

and the trace is over the Dirac, color and space indices. For the vector we haveΓ = γµ , cΓ = 1 and
for the pseudoscalarΓ = γ5, cΓ =�1. To determine the effect of the disconnected diagram on the
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masses of the charmonium states, previous works [6, 7] explore the ratio of the disconnected to the
connected TS correlators at zero momentum:

D(t)
C(t) = F(t)

C(t) �1= Af

Ac
e(mc�mf )t �1: (2.2)

In the aboveF(t) = D(t) +C(t) is the full propagator corresponding to a state with “full” mass
mf . The massmc extracted from the connected propagator is the mass which isusually studied
in lattice simulations. The constantsAf andAc are the full and connected propagator amplitudes,
respectively. Considering that the available lattices arequenched with respect to the charm quark,
an appropriate fitting form for the ratio data at zero momentum would be

D(t)
C(t) = (mc�mf )t + mc�mf

mc
: (2.3)

The differencesmc�mf should be calculated for both the vector and the pseudoscalar and then
subtracted from the mass of each in order to determine the effects of the disconnected diagrams on
the hyperfine splitting.

In this work however, we calculate the PP disconnected correlators, and the above analysis
has to be modified accordingly. The disconnected PP propagator as a function of the Euclidean
distance on the latticer is defined as:

D(r) = cΓ

Nr
∑

r=jx�x0j
L(x)L�(x0)� ; (2.4)

where the sum is over all pairs of lattice points at this distance,Nr is the number of these pairs
and there is trace only over spins and colors inL. The connected PP correlatorC(r) is defined in a
similar manner. It is known that in the continuum limit the asymptotic behavior ofC(r) is:

C(r) � A
e�mcr

r
3
2

; (2.5)

and consequently the behavior ofD(r) in this case can be deduced as follows:

D(r)�� d
dm2

c
C(r)� B

e�mcr

r
1
2

: (2.6)

Thus their ratio is

D(r)
C(r) � B

A
r; (2.7)

where we interpret the amplitude ratio as:

B
A
= mc�mf : (2.8)

The behavior ofD(r) andC(r) on the lattice will be affected by discretization artifacts; still, for
larger and fine lattices we assume that the above behavior is a good approximation.
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3. Results for D(r)
From the previous studies it is known that the charmonium correlator signal disappears very

quickly aroundt = 2�3. We work with the PP disconnected propagator, since this way we ben-
efit from both the additional data at non-integer distances and the much improved statistics. The
correlatorD(r) has from one to three orders of magnitude smaller relative errors than the TS dis-
connected propagator in the region where we have a signal. Figure 1 illustrates this statement by
comparingD(r) andD(t) for ηc for two different ranges ofr andt. In the right panel of Fig. 1,
the comparison is done on a shorter range in order to emphasize the fact that we do have a clear
signal forD(r) in the range where theD(t) signal is completely obscured by the noise. The result

Figure 1: Comparison ofD(t) andD(r) for ηc for two different ranges oft andr.

that theD(r) signal is so much better than the one forD(t) can be explained by the fact that in the
calculation ofD(t) there are a great number of contributions from points, whichalthough not far
from each other in thet direction, are far in the 4d Euclidean space. For the disconnected correlator,
the noise increases strongly with the distance and such points contribute nothing toD(t) but noise.
This problem is avoided when working withD(r) instead.

4. The D(r)=C(r) ratio for ηc

Figure 2 shows our data for the ratioD(r)=C(r). We make the following observations:� The roughness of the data at short distance is a sign of rotational symmetry breaking and
requires a nonasymptotic lattice fitting function.� The ratioD(r)=C(r) inherits the sign flip ofD(r). The sign flip is expected, since from the CP
symmetry of the operator, the sign ofD(r) at r = 0 must be opposite the sign of any single-
pole contributions, and they dominate at larger. We believe this is the first observation of
light state contributions to an operator constructed from charm quarks.� In a separate analysis we find that excited states in the TS correlatorC(t) contribute more
than 20% forr < 5. The same is expected forD(r). Indeed, if we assume a single heavy
mode at short distance, to make the nonasymptotic form ofD(r)=C(r) resemble the data, we
need a mass much heavier than theηc, as indicated in the right panel of Fig. 2. The light
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Figure 2: The lattice data for the ratioD(r)=C(r) for ηc. In the right panel the actual data is compared with
theoretical models with a heavy mode only or with a sum of heavy and light modes.

states inD(r) are very likely dominant forr > 4, but we estimate that the charmonium signal
is still about 30% of the whole signal atr = 5.� The asymptotic expression Eq. (2.7) is not likely to be applicable anywhere. At large distance
D(r) is dominated by lighter hadronic modes (theη andη 0 mesons, glueballs, etc.). Thus to
extract the ratio of ground state amplitudes we must resort to more elaborate models.� In the right panel of Fig. 2 we present two more exploratory approximations forD(r)=C(r)
that include one heavy and one light mode, just to show that the behavior of the ratio data
can be approximated in this manner.

5. Extracting the ground state ηc signal from D(r)
Following the discussion in the previous section, at present we are led to explore a simplified

model for the intermediate ranger 2 [5;11] that includes a ground and excitedηc state and a light
state. The light state represents a number of possible states. We work separately withD(r) and
C(r), extract the amplitudes of theηc contributions, and finally use Eq (2.8) to get an approximate
mass shift.

For the connected correlator we have only a connected-ηc ground state and one excited state.
For the disconnected correlator our ansatz includes a lightstate as well. In momentum space it
reads

D(p2) = �
f (p2)

p2+m2
c
+ g(p2)

p2+m�2
c

�2
1

p2+m2
l

(5.1)

whereml is a light state mass,m�
c is an excited connectedηc mass, andf (p2) andg(p2) are real

functions. We need the residue of the double pole atp2+m2
c = 0 to determine the mass shift. In

coordinate space the asymptotic form is then

D f it (r) = B

r
1
2

(e�mcr +e�m�
cr)+ cB

r
3
2

(e�mcr �e�m�
cr)+ L

r
3
2

e�ml r : (5.2)

The terms correspond, respectively, (Fig. 3) to double polecontributions from the ground and ex-
cited charmonium states, mixed ground-excited state contributions, and the light state contribution.
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Figure 3: Charmonium disconnected diagrams included in the fitting form Eq. (5.2). The ground state
diagram is to the left, the excited is in the middle and the “mixed” one is to the right.

For this preliminary analysis, we take the amplitudes (B) of the ground and excited charmonium
states to be equal. We do this in order to reduce the number of free parameters. Since the excited
state contribution is just a small correction in the chosen fit range, this restriction on the amplitude
is not of great importance. The coefficientc is determined from the mass terms in the ansatz. We
fix c� 7, but find that our results are not very sensitive to varying it over the rangec2 [2;14].

We adjust onlyB and L. We fix the masses as follows: The light mass is taken to be the
central valueml = 0:43(1) from a single-exponential fit (as in Eq. (2.5)) in the ranger 2 [7;12].
The connectedηc andη�

c masses,mc = 1:1598(7) andm�
c = 1:51(5), are known from fits to the

connected TS propagatorC(t).
Before fitting we smoothed the data by averaging the signal insmall bins inr, thus reducing

the effects of the lattice artifacts and improving the continuum approximation. The resulting fit to
D(r) is shown in Fig. 4. The fit hasχ2=d f = 24=19 . Our fit result favors the following range of

Figure 4: The disconnected PP correlatorD(r) and fit to it in the range of distancesr 2 [5;11].
values for the ratio:

B
A
= mc�mf 2 [�4;�1] MeV: (5.3)

Thus the disconnected diagram contribution slightly increases theηc mass.

6



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
7
)
1
1
6

Effects of the disconnected flavor singlet corrections on the hyperfine splitting in charmoniumL. Levkova

6. Summary and conclusions

We have calculated the disconnected pseudoscalar propagator with dramatically reduced noise
using unbiased subtraction methods and point-to-point correlator data. We fit the data to a sim-
plified model and extracted the amplitudes of the ground state in the disconnected and connected
propagators. We find that the disconnected diagram contribution increases theηc mass by 1-4 MeV.

The vector mesonJ=ψ can be studied in a similar fashion. If the corresponding mass shift
of theJ=ψ is negligible as expected [6, 7], we would then conclude thatthe hyperfine splitting is
reduced slightly.

This result is preliminary, however. Further work is neededto explore the sensitivity of this
conclusion to the choice of the fitting model and to include effects of rotational symmetry breaking
properly. Calculations at a smaller lattice spacing are needed to test for heavy-quark and hard-gluon
discretization errors. A similar study of theJ=ψ could test the common expectation that its mass
shift is negligible.
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