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1. Introduction

Flavor physics is one of the urgent applications of Lattice QCD. However, the fact that the
heavy quark masses are large in lattice units is a long-standing problem for heavy quark physics
with LQCD. In the application,ma ≪ 1 is no longer true and the terms containing(ma)n (with a
the lattice spacing) become significant. As a direct simulation with a ≪ 1/m costs too much, we
resort to effective field theories. Various heavy quark effective actions were developed and used for
different physical systems, see Refs. [1, 2, 3, 4] for reviews on this topic.

In this proceeding, our work is based on the so called relativistic heavy quark (RHQ) action [5,
6, 7, 8]. The lattice form of the action, following the formulation proposed in [7, 8], can be written
as:

S = ∑
n

Ψn

{

m0+ γ0D0−
1
2

aD2
0 + ζ

[

~γ ·~D−
1
2

a(~D)2
]

−a∑
µν

i
4

cPσµνFµν

}

Ψn (1.1)

In the heavy quark case, the temporal covariant derivativeD0 is around the order ofma and should
not be treated the same way as the spatial derivativesDi, which are of orderΛQCDa or αsma de-
pending on the system under investigation. Following the Symanzik improvement procedure, we
found that only the three free parametersm0, cP andζ need to be tuned to remove all errors of order
(ma)n and |~pa|. Thus, if the parameters are correctly tuned, the action will have small cutoff ef-
fects:(ΛQCDa)2 for heavy-light systems and(αsma)2 for heavy quarkonium. The main purpose of
this work is to determine the three parameters by matching tophysical quantities for charmed sys-
tems, making more accurate predictions for charmed mesons possible. The lattice spacing can also
be obtained with reasonable precision if we treat it as a fourth quantity to be adjusted to correctly
predict the charmed meson spectrum. All work has been done ondynamical 2+1 flavor lattices,
which is a continuation of work done by H.-W. Lin [9].

The lattices used in this work are the dynamical 2+1 flavor 243×64 DWF lattice configurations
generated by the RBC and UKQCD collaborations [10]. For eachconfiguration, we place sources
at times 0, 16, 32 and 48 separately for better statistics; see Fig. 1. Part of the data was collected
and the analysis was done during and after the lattice conference. This additional data is included
in this proceeding for completeness. Binning the data everytwo configurations had no effects on
the results, which suggests the auto-correlation of the lattice configurations is negligible.

volume Ls (msea,ms) Traj(step) # of configs

243×64 16 (0.005,0.04) 900-4500(40) 91
243×64 16 (0.01,0.04) 900-4500(40) 91
243×64 16 (0.02,0.04) 1885-3605(20) 87
243×64 16 (0.03,0.04) 1000-3060(20) 104

2. Determine the RHQ action and the lattice spacing

To determine the action in such a way that errors are controllable, we tune the parameters
by matching physical observables sensitive to them to theirexperimental values. The parameters
are then determined for each ensemble with different light sea quark masses and extrapolated to
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the chiral limit. The physical on-shell quantities we are going to use are mass combinations of
pseudo-scalar (PS), vector (V), scalar (S) and axial-vector (AV) mesons in heavy-heavy (hh) and
heavy-light (hl) systems [11].

• spin-averaged:mhh
sa = 1

4(mhh
PS +3mhh

V ), mhl
sa = 1

4(mhl
PS +3mhl

V )

• hyperfine splitting:mhh
hs = mhh

V −mhh
PS, mhl

hs = mhl
V −mhl

PS

• mass ratio:m1
m2

, whereE2 = m2
1 + m1

m2
p2, m1: rest mass,m2: kinetic mass.

• spin-orbit averaged and splitting:mhh
sos = mhh

AV −mhh
S , mhh

soa = 1
4(mhh

S +3mhh
AV)

With the experimental values of these quantities at hand, weuse a linear ansatz relating the
three parameters (XRHQ) and the corresponding measured quantities (Y (a)). The linear approx-
imation only holds in a limited region of the parameter space, which we estimate from earlier,
dynamical 163×32 studies [9].

Y (a) =















mηca
mJ/ψ a

...

...

m1/m2















= J ·XRHQ = J ·







m0a
cP

ζ






+ A , (2.1)

where the quantitiesY (a) are known if we assume the lattice spacinga is known from another
method ora-dependent if we treata as a free parameter to be determined. Provided we are able to
determine the J matrix and A vector, we can obtain the parameters by minimizingχ2 defined as:

χ2 = (J ·XRHQ + A−Y(a))TW−1(J ·XRHQ + A−Y(a)) , (2.2)

whereW is the correlation matrix estimated from the measured data.We choose to use only the
diagonal part sometimes because the data might be too noisy to give a well-behavedW . The
quantityχ2 is a quadratic function of vectorXRHQ if lattice spacinga is known and of the vector
(m0a,cP,ζ ,a)T if a is unknown, and so it is easy to minimize analytically. J and Acan be calculated
using finite differences directly from a Cartesian set, and in order to save time we collected data
for the minimum (seven) number of parameter sets: centered at {0.433,2.446,1.295} and with
extent {0.1,0.1,0.02}. There is a potential problem because the RHQ parameters which we finally
determine are actually outside of the region bounded by the 7sets of parameters which we studied.
However, our earlier 163×32 work suggests the region of linearity extends to this matching point.

3. Source search and other concerns

After studying a number of box sources we found that sources with box size 4 and 12 are the
best to extract masses of the pseudo-scalarηc and vectorJ/ψ using a two state fit (t ∈ [4,24]), Fig. 1
(right). However, for masses of the scalarχc0 and axial-vectorχc1, the effective mass plot, Fig. 1
(left) shows that without enough statistics the box size 4 source tends to give a false plateau, so we
use the box size 12 source to determine theχc0 andχc1 masses via a single state fit (t ∈ [9,15]).
Currently the heavy-strange data use a box source with size 8, aiming for the best plateau. TheDs
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Figure 1: Sample effective mass plots ofχc1 (left) andηc (right). Red triangles: 4 sources per config (s/c)
and box size (bs) 4; blue circles: 4 s/c, bs=12; black squares: 1 s/c, bs=4 and magenta crosses: 1 s/c, bs=12.

andD∗
s states are using fitting rangest ∈ [6,32] and[12,32] respectively. For the mass ratiom1/m2,

the momentum dependence is studied for both theηc andJ/ψ mesons and the results are quite
consistent. We use results from theηc momentum dependence with the three lowest momenta.

Other concerns such as quark propagator inversion precision are studied in detail for heavy
quarks and the relative error for every time slice is controlled to less then 10−4 when a source
placed at time zero, while light propagators are well-understood from previous studies.

4. Analysis and results

Let’s list explicitly all the quantities used here for fitting, (1)14(mηc + 3mJ/ψ) (2) mJ/ψ −mηc

(3) m1
m2

(4) 1
4(mχc0 +3mχc1) (5) mχc1 −mχc0 (6) 1

4(mDs +3mD∗
s
) (7) mD∗

s
−mDs

4.1 Heavy-heavy sector

Using only results from the heavy-heavy states, i.e., from quantities (1)–(3), the matched RHQ
parameters and the corresponding chiral extrapolation areshown in the table below:

msea m0a cP ζ
0.005 0.410(8) 2.356(16) 1.270(7)

0.01 0.398(8) 2.323(15) 1.269(9)

0.02 0.371(9) 2.263(14) 1.272(9)

0.03 0.341(7) 2.170(14) 1.263(8)

-0.00315 0.434(9) 2.422(18) 1.273(9)

msea m0a cP ζ
0.005 0.228(9) 2.029(15) 1.238(8)

0.01 0.217(8) 1.998(15) 1.237(9)

0.02 0.190(9) 1.940(13) 1.240(10)

0.03 0.162(8) 1.853(13) 1.230(8)

-0.00315 0.251(9) 2.091(17) 1.242(10)

Table 1: The inverse lattice spacing is assumed to be 1.62 GeV (from the static quark potential withr0 =

0.50f m) for the left table and 1.73 GeV (fromΩ− baryon) for the right one.

From quantities (1)–(5), we can determine the RHQ parameters as well as the lattice spacing.
Since the statesχc0 andχc1 are a lot nosier the correlation matrixW (in Eq. 2.2) is not well mea-
sured. So instead we use only the diagonal part of the correlation matrix. The chiral extrapolation
givesa−1 = 1.74(4) GeV, as shown in Fig. 2. The inconsistency between this and the result from
the static quark potential suggests thatr0 is inaccurate.
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Figure 2: Chiral extrapolation of inverse lattice
spacing, determined from quantities (1) to (5),
with W diagonal correlation matrix
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Figure 3: The naiveχ2
pred at chiral limit from

fitting the three RHQ parameters with different
input lattice spacings.

We can make predictions forχc0 and χc1 states by using J and A calculated from the mea-
sured data and the RHQ parameters determined from quantities (1)–(3). See Fig. 4; all errors are
propagated using the jackknife technique. When extrapolated to the chiral limit, our predictions
are quite consistent with the experimental values, and the errors are less than one percent. This is
encouraging and suggests that we may apply this method to make accurate predictions for other
charmed mesons.
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Figure 4: The prediction ofmχc0 (left) andmχc1 (right) in the chiral limit, with parameters determined above
assuminga−1 = 1.73 GeV, the black lines stand for experimental values.

Some consistency checks have been carried out for the fittingprocedure, especially for the
fitting which determines the lattice spacing. We treat lattice spacing as an input parameter, and fit
the RHQ parameters with predictions ofχc0 andχc1 extrapolated to the chiral limit as a function
of a. Then an uncorrelated, naiveχ2

pred is defined from:

χ2
pred = ∑

i=0,1

(mpred
χci −mphys

χci )2

σ2(mpred
χci )

(4.1)

Heremphys
χci means the experimental value for theχχci meson. A plot showing the resultingχ2

pred

versus the inverse lattice spacing is plotted in Fig. 3. It shows good consistency that theχ2
pred
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minimum occurs whena−1 is around 1.72 GeV. For all fitting procedures, such as mass fitting and
momentum dependence fitting, we use an uncorrelated fit.

4.2 Heavy-strange sector

The lattice spacing determined from chiral extrapolation above using heavy-heavy states is
consistent with that determined fromΩ− baryon: a−1 = 1.73(2) GeV, but the errors are larger
because of the noisy results forχc0 and χc1 states. So we proceed to include the heavy-strange
sector, and include the quantities (6) and (7) in the analysis to replace (4) and (5) since (6) and
(7) are more accurately determined. The physical strange quark mass we are using isms = 0.036
in lattice units, Ref. [12]; but as the 243 data suggests a slightly differentms, this may introduce
some systematic error. We are now studying the more accuratevalue ms = 0.034, so we can
extrapolate/interpolate to the rightms assuming the dependence on the strange mass is linear. The
results of the fitted and chiral extrapolated RHQ parametersanda with a full correlation matrix are
listed below in Tab. 2, and the extrapolations ofa−1 to the chiral limit are plotted for both cases
with full correlation matrix and diagonal correlation matrix in Fig. 5. The corresponding results
are 1.749(14) GeV and 1.730(23) GeV respectively.

msea m0a cP ζ a−1(GeV)

0.005 0.241(21) 2.052(32) 1.240(8) 1.722(11)

0.01 0.243(38) 2.049(57) 1.242(9) 1.713(20)

0.02 0.271(30) 2.084(42) 1.254(9) 1.679(14)

0.03 0.297(27) 2.092(43) 1.254(8) 1.646(13)

-0.00315 0.220(28) 2.037(42) 1.236(9) 1.749(14)

Table 2: The RHQ parameters and lattice spacing determined from quantities (1)(2)(3)(6)(7), and extrapo-
lated to the chiral limit, withχ2 from a full correlation matrixW .
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Figure 5: Chiral extrapolation of inverse lattice spacing, determined from quantities (1)(2)(3)(6) and (7),
with W a full (left) or a diagonal (right) correlation matrix.

If we fix a−1 to be 1.62 GeV then using (1)(2)(3)(6)(7) to determine the RHQ parameters will
result in a hugeχ2/d.o. f = 146/2, which tells us the fitting fails if the wrong lattice spacing is
used. If we seta−1 to be 1.73 GeV, thenχ2/d.o. f = 1.19/2, which confirms again our observation.
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5. Conclusion

We have applied the RHQ action to the charmed system, both heavy-heavy and heavy-strange,
and demonstrated that the parameters in the RHQ action can bedetermined with sub-percent preci-
sion by matching several quantities to their experimental values. We discovered our lattice spacing
from static quark potential withr0 = 0.5 f m was too large. Takinga as a free parameter we were
then able to determine it with a few percent error. The resultis quite consistent with that implied
by theΩ− baryon. In the heavy-heavy system, theχc0 andχc1 states are not as well-determined
as theJ/ψ andηc states. We choose to use a diagonal correlation matrix when doing the four free
parameters (three RHQ parameters anda) fitting in that case. The bare strange quark mass we are
using in the heavy-strange run isms = 0.036 in lattice units, which is slightly above the real one, so
there might be a small amount of systematic error introducedinto the results involving these states.
Another heavy-strange run with differentms is underway. In conclusion, we view the application
to the charmed system a success. And we will likely apply thismethod to charm-light states and
perhaps to bottom quarks as well to explore more interestingtopics.
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