
P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
7
)
1
1
8

The Spectral Structure of Correlator Matrices
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In lattice QCD spectrum calculations, it is desirable to obtain multiple excited state energies in
each symmetry channel. Typically, one constructs several interpolating operators for the sym-
metry channel of interest, forms the ‘correlator matrix’ of all possible two-point functions, and
uses the variational method to obtain as many energy levels as possible. We present a detailed
look at this last step, starting from a discussion of the symmetry properties and spectral struc-
ture of the correlator matrix. We continue by motivating and describing the variational method,
before discussing some conceptual and practical challenges concerning the light baryon sector.
We conclude by mentioning some alternate spectrum extraction methods currently under study.
Throughout, we attempt to quantify all approximations and assumptions, and we illustrate our
points using a nucleon correlator matrix estimated on dynamical two-flavor lattice data.
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The Spectral Structure of Correlator Matrices Adam C. Lichtl

1. Formalism

We will work with a D×D matrix of two-point functions, the so-called correlator matrix:

C(P)
ab (τ)≡ 1

Z
Tr

[
e−(β−τ)HO

(P)
a e−τHO

(P)
b

]
, (1.1)

where Z = e−βH is the partition function, β is the temporal extent of the lattice, H is the Hamilto-
nian of the system, and the D operators {O(P)

a } are designed to have

• Zero three-momentum: ~p = 0

• Gauge invariance: singlet color structure

• Definite lattice spin [1]: G1, H, or G2 (double-valued irreducible representations of Oh)
(Note: the operators we use do not mix among the different lattice spin irreps.)

• Definite parity P =±, also denoted as: g = gerade (even) and u = ungerade (odd)

The operators carry baryon number B = 1 and have been constructed to have the following behavior
under charge conjugation, represented by the unitary operator Uc:

UcO
(P)
a U†

c = UcO
(P)
a Uc = O

(−P)
a , (1.2)

where we have dropped the dagger because (Uc)2 = I. This behavior leads to the following relation
between the positive- and negative-parity correlator matrices:

C(P)
ab (τ) =

1
Z

Tr
[
e−(β−τ)HO

(P)
a e−τHO

(P)
b

]
, (1.3)

=
1
Z

Tr
[
e−(β−τ)HUcUcO

(P)
a UcUce−τHO

(P)
b

]
, (1.4)

=
1
Z

Tr
[
e−(β−τ)HUcO

(P)
a Uce−τHUcO

(P)
b Uc

]
, (1.5)

=
1
Z

Tr
[
e−(β−τ)HO

(−P)
a e−τHO

(−P)
b

]
, (1.6)

=
1
Z

Tr
[
e−τHO

(−P)
b e−(β−τ)HO

(−P)
a

]
, (1.7)

= C(−P)
ba (β − τ), (1.8)

where we have used the cyclic property of the trace and the fact that charge conjugation is a sym-
metry of the theory: [H,Uc] = 0. This relation is used to improve our statistics by averaging our
numerical estimates of C(P)

ab (τ) with those of C(−P)
ba (β − τ).

The system is defined in a finite volume and thus has a discrete spectrum. Writing the trace as
a sum over energy eigenstates {|n〉} and inserting a second complete set of eigenstates {|k〉} gives
us the general spectral representation of the correlation matrix:

C(P)
ab (τ) =

1
Z

Tr
[
e−(β−τ)HO

(P)
a e−τHO

(P)
b

]
, (1.9)

=
1
Z

∞

∑
n=0

∞

∑
k=0

〈n|e−(β−τ)HO
(P)
a e−τH |k〉〈k|O(P)

b |n〉, (1.10)

=
1
Z

∞

∑
n=0

∞

∑
k=0

〈n|O(P)
a |k〉〈k|O(P)

b |n〉,e−Ekτe−En(β−τ). (1.11)
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In Eq. 1.11, we may freely divide a factor of E−E0β out of the bottom and top, effectively cancel-
ing any zero-point energy of the theory: H|0〉 = 0. Each of our baryon operators O

(P)
a creates a

three-quark system of a given parity P and annihilates a three-antiquark system of the same parity
P. Unlike bosons, a fermion and its antifermion have opposite intrinsic parities; an antibaryon’s
energy is therefore the same as that of its corresponding opposite-parity baryon state, its so-called
opposite-parity partner. Since chiral symmetry is broken in QCD, the masses of the opposite-parity
partners may differ.

Assuming throughout that 〈k|O(P)
b |n〉 ∼< 〈k′|O(P)

b |n′〉 for n,k ≤ n′,k′, the leading terms in the
spectral representation involve the following non-vanishing matrix elements:

• 〈k|O(P)
a |0〉 where |k〉 is a baryon state (B = 1) having parity P and energy E(P)

k

• 〈0|O(P)
a |n〉 where |n〉 is an antibaryon state (B =−1) having parity P and energy E(−P)

n

• 〈BB|O(P)
a |B〉 where |B〉 has baryon number B = 1 and |BB〉 has baryon number B = 2

• 〈B̄|O(P)
a |B̄B̄〉 where |B̄〉 has baryon number B =−1 and |B̄B̄〉 has baryon number B =−2

In the last two matrix elements above, a positive-parity operator will connect single- and multi-
(anti)baryon states with the same parity, while a negative-parity operator will connect single and
multi-(anti)baryon states with opposite parity.

Treating the largest terms explicitly, and using charge conjugation to convert the antibaryon
states |n〉 into baryon states |k′〉 (the trace is invariant under charge conjugation) gives:

C(P)
ab (τ) =

1
1+ e−E1β + · · ·

∞

∑
k=1

〈0|O(P)
a |k〉〈k|O(P)

b |0〉e−E(P)
k τ

+
1

1+ e−E1β + · · ·

∞

∑
k′=1

〈0|O(−P)
b |k′〉〈k′|O(−P)

a |0〉e−E(−P)
k′ (β−τ)

+ 〈1|O|1,1〉〈1,1|O|1〉e−E1τe−E1(β−τ)

+ · · · . (1.12)

where E1 is the energy of the lightest baryon state |1〉 accessible by the action of our operators
on the vacuum, regardless of parity. We have approximated the energy of the lightest interacting
B = 2 state |1,1〉 as E1, to be conservative. Thus, all higher-order terms are suppressed by a factor
of e−E1β , which is O(10−6) in our studies. At this point, we note that before neglecting terms, it is
important to keep an eye on e−Ekτ vs. e−E1β . Dropping the higher-order terms gives us a spectral
representation of the correlator matrix in terms of single-baryon states only:

C(P)
ab (τ) ≈

∞

∑
k=1

〈0|O(P)
a |k〉〈k|O(P)

b |0〉e−E(P)
k τ

+
∞

∑
k′=1

〈0|O(−P)
b |k′〉〈k′|O(−P)

a |0〉e−E(−P)
k′ (β−τ) (1.13)

= 〈0|O(P)
a e−HτO

(P)
b |0〉+ 〈0|O(−P)

b e−H(β−τ)O
(−P)
a |0〉 (1.14)

≡ 〈O(P)
a |e−Hτ |O(P)

b 〉+ 〈O(−P)
b |e−H(β−τ)|O(−P)

a 〉 (1.15)
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Notice that this approximation maintains the previously established relation (Eq. 1.8): C(P)
ab (τ) =

C(−P)
ba (β − τ). In the following, we will treat the approximation (Eq. 1.13) as exact and will re-

fer to the two terms in Eq. 1.15 as the ‘forward’ and ‘backward’ parts of the correlator matrix,
respectively. For convenience, we define:

C̃(P)
ab (τ)≡ 〈O(P)

a |e−Hτ |O(P)
b 〉, (1.16)

which allows us to write

C(P)
ab (τ) = C̃(P)

ab (τ)+C̃(−P)
ba (β − τ) (1.17)

= C̃(P)
ab (τ)+C̃(−P)∗

ab (β − τ) (1.18)

It is our ultimate goal to extract the spectrum E(P)
k ,E(−P)

k′ for the various QCD hadron sectors.

2. The variational method

Ideally, we would like to work with a very large temporal extent β >> τ such that:

C(P)
ab (τ)

β>>τ→ C̃(P)
ab (τ) = 〈O(P)

a |e−Hτ |O(P)
b 〉, (2.1)

in which case the problem reduces to simply diagonalizing the operator e−Hτ in the subspace de-
fined by the trial basis {|O(P)

a 〉}. This can be accomplished with the variational method [3, 4, 5].
We begin by refining the states in our trial basis by (formally) evolving them by some amount

τ0/2 in imaginary time. This serves to ‘relax’ them onto the lower-lying energy states of interest:

|O(P)
a (τ0)〉 ≡ e−Hτ0/2|O(P)

a 〉 (2.2)

= e−Hτ0/2O
(P)
a |0〉 (2.3)

=
∞

∑
k=1

|k〉
[
e−Ekτ0/2〈k|O(P)

a |0〉
]
, (2.4)

where we have used the fact that 〈0|O(P)
a |0〉= 0. For sufficiently small τ0, the trial basis is linearly

independent, but is not necessarily orthogonal or normalized:

〈O(P)
a (τ0)|O(P)

b (τ0)〉= C̃(P)
ab (τ0) (2.5)

We can use the variational method to diagonalize the operator e−H(τ−τ0) in our trial subspace by
forming the linear combinations:

|Θi〉 ≡
D

∑
a=1

|O(P)
a (τ0)〉vai, (2.6)

where the complex numbers vai are the variational coefficients obtained by finding the extrema of:

〈Θi|e−H(τ−τ0)|Θi〉
〈Θi|Θi〉

=
v†

i C̃(P)(τ)vi

v†
i C̃(P)(τ0)vi

. (2.7)
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Setting the derivative of Eq. 2.7 with respect to the vai to zero yields a generalized eigenvalue
problem whose solutions are the columns vi of the variational coefficient matrix V .

C̃(P)(τ)vi = λiC̃(P)(τ0)vi. (2.8)

The eigenvalues {λi} appearing in 2.8 are known as principal correlators, and if all has gone well,
they should asymptote in τ as e−E(P)

i (τ−τ0) while the vk maintain the orthogonality of the associated
states {|Θi〉}. From the properties of the generalized eigenvalue problem, we can see that the metric
of the vectors vi used to diagonalize C̃(P)(τ) at later times is fixed at the reference time τ0 by:

〈Θi|Θ j〉= v†
i C̃(P)(τ0)v j = δi j. (2.9)

It should be noted that the vai, λi, and |Θi〉 all depend on both τ and τ0.
From the spectral expansion of the D trial basis states in Eq. 2.4, we see that if we can choose

τ0 large enough such that
[
e−Ekτ0/2〈k|O(P)

a |0〉
]

is negligible for k > D, then Eq. 2.9 implies that

〈k|Θ j〉=
D

∑
a=1

〈k|e−Hτ0/2O
(P)
a |0〉va j ∝ δk j, j,k ≤ D, (2.10)

and that
〈Θk|e−H(τ−τ0)|Θk〉= v†

kC̃(P)(τ)vk = λk ≈ e−E(P)
k (τ−τ0) (2.11)

occurs almost immediately for τ > τ0. If τ0 is not sufficiently large, it can be shown that the
asymptotic form (Eq. 2.11) is still reached, but much more gradually. In this case, it is possible that
the signal will be lost in the noise before a reliable estimate of E(P)

k can be made.
We would like to choose τ0 to be large enough such that Eq. 2.10 holds to numerical precision,

but are limited by three main factors. First, we must estimate the correlator matrix numerically;
the signal-to-noise ratio decays exponentially, leading to a noisy estimate of the trial basis for large
τ0. Second, as we increase τ0 towards β/2, the spectral terms in Eq. 1.13 become exponentially
small, and thus the rank of C(P)(τ0) will drop below D. When this occurs, the condition number
of the matrix will blow up because the trial basis will not have full rank, and the generalized
eigenvalue problem will be numerically unstable. This could be remedied by selecting some subset
of operators (reducing D), but would incur the cost of throwing away information-containing entries
of the original correlator matrix. Finally, as we increase τ0, the previously neglected backward term
C̃(−P)∗(β − τ0) will begin to contribute, with the particularly serious consequence that:

〈O(P)
a (τ0)|O(P)

b (τ0)〉 6= C̃(P)
ab (τ0) (2.12)

This means, for example, that as we increase τ0 to reduce the positive-parity contamination, we
will introduce negative-parity contamination. These issues are not always troublesome in practice,
but we have found that they are indeed present in our study.
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3. Eigenvalue behavior

It is illuminating to examine the eigenspectrum (and rank) of an actual lattice QCD correlator
matrix (Fig. 1) as a function of τ before applying the variational method. Here we consider a corre-
lator matrix defined using D = 16 previously designed [1, 2, 3] nucleon operators (isospin I = 1/2,
I3 = +1/2), and estimated from 336 LHPC1 anisotropic two-flavor Wilson lattice configurations
having the following parameters:

• Lattice dimensions: 243×64
• Spatial lattice spacing: as ≈ 0.11 fm
• Anisotropy: as/aτ ≈ 3.0
• Pion mass: mπ ≈ 400 MeV

To find the D = 16 eigenvalues λ j at a given τ , we solve C(P)(τ)v j(τ) = λ j(τ)v j(τ) at each τ .
The largest four λ j(τ)’s, corresponding asymptotically to the lowest four energy levels, are plotted
on the left in Fig. 1. The most prominent feature of this plot is the apparent crossing and transient
kinking of the eigenvalue flow with τ . The blue curve in particular exhibits interesting behavior:
it falls as exp[−E(+)

2 τ] for early τ , then becomes contaminated with the backward ground state
exp[−E(−)

1 (β −τ)] at intermediate τ , and finally is forced (by the higher eigenvalues) to asymptote
as exp[−E(−)

4 (β − τ)]. We may understand this qualitatively by the fact that the negative-parity
operators excite the negative-parity energy levels differently than the positive-parity operators ex-
cite the positive-parity energy levels. In other words: the coefficients diagonalizing C(P)(τ) for
τ << β/2 are largely independent of the coefficients diagonalizing C(P)(τ) for τ >> β/2. Unfor-
tunately, our variationally-determined negative-parity operators are completely determined by our
variationally-determined positive-parity operators.
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Figure 1: These three plots are associated with a 16× 16 nucleon correlation matrix C(P)(τ) in the G1

lattice spin channel. Left: the largest four eigenvalues of the positive parity matrix. We see crossing and
transient behavior due to the interference of the forward and backward parts of the correlator matrix. Because
our negative parity operators have a fixed relation to our positive parity operators, we do not have enough
variational coefficients in this technique to separately isolate the positive- and negative-parity contributions
when they are both present. Center and right: the largest four principal correlators for the positive- and
negative-parity correlator matrices, using τ0 = 4aτ and τ0 = 5aτ , respectively. In the center plot we see
suspected crossing behavior around τ = 30aτ and again around τ = 45aτ . In the right plot we see significant
opposite-parity partner contamination starting around τ = 10aτ .

1Special thanks to Robert Edwards and Balint Joó from Jefferson Lab.
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To understand this behavior, we look at the spectral structure of λ j(τ):

λ j(τ) = v†
j(τ)C(P)(τ)v j(τ) = v†

j(τ)C̃(P)(τ)v j(τ)+ v†
j(τ)C̃(−P)∗(β − τ)v j(τ) (3.1)

= v†
j(τ)C̃(P)(τ)v j(τ)+ vT

j (τ)C̃(−P)(β − τ)v∗j(τ) (3.2)

≡ 〈Θ(P)
j |e−Hτ |Θ(P)

j 〉+ 〈Θ(−P)
j |e−H(β−τ)|Θ(−P)

j 〉 (3.3)

Where we have introduced the states |Θ(P)
j 〉 created by linear combinations of our basis operators:

Θ
(P)
j ≡

D

∑
a=1

O
(P)
a va j, Θ

(−P)
j ≡

D

∑
a=1

O
(−P)
a v∗a j. (3.4)

The variationally-determined Θ
(P)
j operators behave as follows under charge conjugation (c.f. Eq. 1.2):

UcΘ
(P)
j Uc =

D

∑
a=1

O
(−P)
a va j = Θ

(−P)
j (3.5)

and thus we see that a brute-force application of the variational method to a correlator matrix
having significant contributions from both forward and backward components will be plagued with
contamination because we are using only one set of variational coefficients va j to diagonalize two
matrices C̃(P)(τ) and C̃(−P)∗(β − τ), which separately have different eigenvectors.

4. Outlook

We are currently examining two alternate techniques for the extraction of the spectrum from
a correlator matrix. First, we are considering the possibility of introducing more coefficients by
taking linear combinations of the elements of C(P)(τ) and C(−P)(β −τ). This may allow us to better
decompose C(P)(τ) by breaking the charge conjugation relationship of our variationally determined
operators. A second approach would be to attempt full matrix fits of increasing rank M to the
reduced matrix Ri j(τ) = v†

i C(τ)v j, where the vi’s are variationally determined at some fixed time
τ∗ and only M of the column vectors vi are used (i, j = 1, . . . ,M) . We expect continuing progress
towards producing reliable determinations of the various excited baryon spectra predicted by QCD.

This research is supported by NSF grant PHY 0653315, and numerical calculations were per-
formed using computing resources provided by Jefferson Lab and the RIKEN BNL Research Cen-
ter (RBRC) at Brookhaven Lab. Additional resources and travel support to the XXV International
Symposium on Lattice Field Theory were provided by the RBRC. The author would also like to
thank J. Dudek, R. Edwards, C. Morningstar, M. Peardon, and D. Richards for many fruitful dis-
cussions relating to this topic.

References

[1] S. Basak et al., Phys. Rev. D72 (2005), 074501 and 094506.

[2] A. C. Lichtl et al., PoS LAT2005 (2006), 076.

[3] A. C. Lichtl, PhD Thesis, hep-lat/0609019.

[4] M. Lüscher and U. Wolff, Nucl. Phys. B339 (1990), 222.

[5] J. J. Dudek, arXiv:0707.4162 [hep-lat].

7


