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We calculate the two-pion wave function for the | = 2 S'wave two-pion system with afinite scat-
tering momentum and estimate the interaction range between two pions. It allows us to examine
the validity of the necessary condition for the finite-volume method for the scattering phase shift.
A calculation is carried out with a plaquette gauge action for gluons and a clover-improved Wil-
son action for quarks at 1/a = 1.63 GeV on 322 x 120 lattice in the quenched approximation.
We conclude that the necessary condition is satisfied within statistical errors for the lattice size
L > 32, when the quark mass is in the range m2 = 0.176 — 0.345 GeV? and the scattering mo-
mentum in k? < 0.026 GeV2. We also find that the energy dependence of the interaction rangeis
small and it takes 1.2 — 1.7 fm for our simulation parameters. We obtain the phase shift from the
two-pion wave function with a smaller statistical error than that from the conventional analysis
with the two-pion time correl ator.
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1. Introduction

The scattering phase shift is an important quantity for understanding a dynamical aspect of
hadrons. For the | = 2 Swave two-pion system, which is the simplest case, the phase shift has
been calculated in Refs. [1, 2, 3, 4]. The calculations employed the finite-volume method, in which
the phase shift is related to the energy on afinite volume. It has been proposed by L Uischer [5] and
extended for the non-zero momentum system by Rummukainen and Gottlieb [6].

The derivation of Luscher’'s and Rummukainen-Gottlieb's formula assumes the condition R <
L/2 for the two-pion interaction range R and the lattice size L, so that the boundary condition does
not distort the shape of the two-pion interaction. The CP-PACS collaboration calculated the two-
pion wave function for the ground state of the | = 2 Swave two-pion system and estimated the
interaction range R from the wave function [7]. In their case the scattering momentum is highly
small, k ~ 0, thus their work is an examination of the necessary condition for the calculation of the
scattering length on the lattice.

In present work we extend their work for the scattering length (the scattering momentum
k ~ 0) to that for the scattering phase shift (k # 0). For this aim we consider the ground state of
the system having a non-zero total momentum P = (27/L)g in a L® box satisfying the periodic
boundary condition. All calculations of this work has been done on VPP5000/80 at the Academic
Computing and Communications Center of University of Tsukuba.

2. Finite sizeformula

In this section we briefly review the finite-volume method presented by Rummukainen and
Gottlieb in Ref. [6], with emphasis on the role of the condition for the interaction range. The
formula has aso been derived from another approaches in Ref. [8] and [9]. We follow, however,
from the original derivation in Ref. [6].

The two-pion wave function on afinite periodic box of volume L2 is defined by

O(x,t) = (0] 7t (X +x/2, T +t/2) a1t (X —x/2, T —t/2) |nm;E,P) - e PX. T (2.1)

where |z7; E,P) is an energy eigenstate of the two-pion system with the energy E and the total
momentum P. 7t (x,t) isan interpolating operator for 7t at (x,t). The two exponential factors are
introduced to remove the trivial exponential factors for the center of mass coordinate X and T.

In order to relate the wave function to the scattering phase shift, we transform the wave func-
tion d(x,t) in (2.1) to that in the center of mass frame &, (x,t) by the Lorentz transformation.
Here we assume that the two-pion interaction range Ris smaller than one half the lattice extent, i.e.
there exists the region R < |x| < L/2, where the two pions behave as free particles. In this region
the wave function satisfies the following two equations [6].

0
(V24 K?) Dy (x,1) =0, 5t Pou (x,t) =0, (2.2)
wherek is the scattering momentum related to theinvariant massby/s= vE2 — P2=2,/m2 + k2.

D, (x,1) also satisfies the boundary condition,

Dy (X,t) = (=1)2PM . (x+L7m],t)  for meZ3 (2.3)



I = 2 Two-Pion Wave Functions with Non-zero Total Momentum Kiyoshi Sasaki

where 7 is the vector operation y[x] = X + X, with the Lorentz boost factor y = E /S, X, =
P(P-x)/P?andx, = X=X.
The solution of the (2.2) under the condition (2.3) can be given by

Dy (x,) = LSZ P, (T={p|p=(2r/L)- 7 N +P/2 ne Z%}) (24)

= ’)/L3 2 2 J0 kX)+ k +zclm J|(kX) (2-5)

up to overall constant, where j(kx) is the spherical Bessel and nj(kx) is the spherical Neumann
function. G (k) is some constant depending on the scattering momentum k. The first and second
terms of (2.5) consist of the S'wave component and those coefficients give the S-wave phase shift

S5(K),
1 A 1 1

ek K O % PR

This is the Rummukainen-Gottlieb formula[6].

(2.6)

3. Detailsof ssmulation

In the present work we consider the ground state of the system with the total momentum P=0
and P = (2r/L)e. We can obtain the scattering length from the energy of the system with P =0
and the phase shift from that with P = (27 /L)e, through the Rummukainen-Gottlieb formula (2.6).

In order to calculate the wave function we consider the correlator,

F(x,7) = (0] Q(x,7) Q(P, ) |0) . 3.1

The operator Q(X, 7) is defined by
22 X 1t (X +Rx],7) 7t (X, 1) . (3.2)
The vector operation R represents an element of the cubic group (Q,) for P = 0 and the tetragonal
group (D) for P = (2r/L)ec. The summation over R projects out Al representation of these

groups, which equals to the S'wave state ignoring the effects from higher angular momentum | > 2.
The operator Q(P, 75) in (3.1) is defined by

_ 1 Nk t
AP, = 3. |7 (P 0wy (33
j=
where
nt (P, Ts,é-) [Ze‘PX u(x, rs)é ]y5 [Zd (y,15)& (y)] . (3.4

The operator (P, 75; ;) is defined as " (P, 75;&;) by changing &;(x) to 1;(x). The functions
&;(x) and n;(x) areU (1) noise whose property is

Nk
Jim Y & X0E(y) = %) 35)
R Rj=1
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Figure 1: Thetwo-pion wave functions @, (X) at m2 = 0.176 GeV2 for P=0and P = (2rr/L)ey. Theleft
and right panels for each momentum show the wave function on xy- and yz-plane.

In the present work we take N;y = 2 in (3.3).

In large 7 region, we can obtain the wave function for the ground state in (2.1) by ®(x,0) =
F(x,7)/F (X, 7) introducing the reference position x,. In the present work we set =20, 7 — 75 =
40 and X, = (7,5, 2). Inthe estimation of theinteraction range, we analyze the wave function in the
center of mass frame @, (x,t) att = 0. It isrelated to d(x,t) by Py, (¥[x],0) = @(x,0) outside
of the interacting region (|x| > R) from the second equation in (2.2).

Gauge configurations are generated in aquenched approximation with a plaguette gauge action
a B =5.9 on a32 x 120 lattice. The physical quantities are measured every 200 sweeps inde-
pendently for each quark mass parameter. A clover fermion action with G, = 1.364 is used. The
quark propagators are imposed to the Dirichlet boundary condition in the time direction and to the
periodic boundary condition in the spatial one. Thelattice cutoff isestimated as1/a= 1.63(5) GeV
(a = 0.121(3) fm) from the p meson mass. Three quark masses are chosen to give nf = 0.176,
0.238 and 0.345 GeV?2. The numbers of configurations are 400, 212 and 212 for each quark masses.

4. Resultsof interaction range

In Fig. 1, we show the two-pion wave functions @, (x) a m2 = 0.176 GeV? for P = 0 and
for P= (2n/L)ec. The left and right panels for each momentum show the wave function on xy-
and yz-plane. We find avery clear signal.

We now consider the two-pion interaction from the ratio, V (x) = V2@, (X) /@y (X). Away
from the two-pion interaction range, i.e. |x| > R, we expect that V (x) isindependent of x and equals
to —k? from (2.2). In Fig. 2, V(x) for the same parameters as for Fig. 1 are plotted. We find a very
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Figure 2. V(x) at m2 = 0.176 GeV? for P= 0 and P = (2/L)ey. The left and right panels for each
momentum show the V (x) on xy- and yz-plane.

clear signal and V (x) seems to be constant for |x| > 10. We observe a strong repulsive interaction
at the origin consistent with the negative phase shift of the | = 2 two-pion system.
In order to estimate the interaction range R, we consider,

U(x) = VZCI)CM (X)/ Py (X) + K2, (4.1)

where k? is obtained from the two-pion time correlator. According to Ref. [7], we employ the oper-
ational definition of the interaction range R as the scale where U (x) is sufficiently small compared
to the statistical error. Strictly speaking, even if |x| takes alarge value, U (x) does not vanish and
has a finite tail. However, the systematic error for the final results of the phase shift due to the
existence of thetail is buried into the statistical error in this definition.

In Fig. 3, we show U (x) as a function of |x| for P=0and P = (2r/L)e at the three quark
masses. We find that the interaction range R takes

me (GeV?) 0.176 0.238 0.345
R for P=0 130 140 120
R for P=(2r/L)e¢ 10.0 110 120. (4.2)

It is a most 14.0 (1.69 fm) and smaller than L/2 = 16. Thus the necessary condition for the
Rummukainen-Gottlieb formula (2.6) is satisfied within statistical errors at our simulation points.

5. Results of scattering phase shift

We estimate the phase shift with the following three methods :
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Figure 3: U(x) asafunction of |x| for P=0and P = (2r/L)ey for several quark masses.

We extract the energy E from the two-pion time correlator and calculate the scattering mo-
mentum by k? = (E2 —P?) /4 —m2. The phase shift is calculated by substituting K into (2.6).
The results of the phase shift are shown in the left panel of Fig. 4 (labeled “from T”), where
the scattering amplitudes,

A(My, K) = tan 8, (K) /K- /M2 + K2 (5.1)

are plotted.

. We extract k? by fitting the wave function @, (x) with the fitting function given in (2.4)

taking k? and an overall constant as thefitting parameters. We choose thefitting range x| > R
with Rgivenin (4.2). The results are plotted in the left panel of Fig. 4 (labeled “from W”).

. k? is extracted by fitting V (x) to a constant in the region |x| > R with R given in (4.2). We

show the results in the left panel of Fig. 4 (labeled “from V”).

As shown in the left panel of Fig. 4, the results given by the three method are consistent within the
statistical errors. The data given by the method 3 (“from V) provides the smallest statistical error,
so the following analysis is performed with this data.

In order to obtain the phase shift at the physical quark mass, we extrapolate our results with

the fit form,

A(My, K) = AL + Aygmit 4+ Ay K2 + A 2k . (5.2)
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Figure 4: In the left panel A(my,k) given by the three methods are shown as a function of k2. The dotted
line is the fit curve for the data given by the method (“from V"). In the right panel our final results of the
scattering phase shift at the physical quark mass are plotted and compared with the experiment [ 10].

The fit curves for thisfitting are aso plotted in the left panel of Fig. 4. As shown in the figure the
fitting is carried out well. Our final results of the phase shift at the physical quark mass are shown
in the right panel of Fig.4 and compared with the experiment [10]. Our results are slightly larger
than the experiment. A possible origin of the discrepancy is finite lattice spacing effects. We must
leave the confirmation of this to studies in the future.

6. Conclusion

In the present work, we have studied the | = 2 two-pion wave functions with the scattering
momentum k? ~ 0 and k? # 0. We have estimated the two-pion interaction ranges R from those. It
has been confirmed that the necessary condition for the Rummukainen-Gottlieb formula (2.6)
satisfies within statistical errorsin our parameters. Moreover, we have estimated the scattering
phase shift with the two-pion wave function. These methods provide a smaller statistical error
than that from the conventional analysis with the two-pion time correlator.
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