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Hadron spectrum of QCD with one quark flavor

1. Introduction and motivation

QCD with one flavor of quarks (Nf = 1 QCD) radically differs from QCD with two or more
flavors due to the absence of a chiral symmetry: the abelian symmetry of the one flavor theory
is washed out at the quantum level by the Adler-Bell-Jackiw anomaly. Only avector symmetry
survives, related to the conservation of the quark number. As a consequence of this, the main
features of the phase structure and mass spectrum of the single flavor theory strongly deviate from
the familiar picture, affected by the spontaneous breaking of the non-abelian chiral symmetry, of
ordinary QCD. These unphysical features ofNf = 1 QCD explain the little attention reserved to
this kind of setup in past simulations (however with the exceptions of [1] and [2]).

This situation has changed in recent years, mainly due to the works of M. Creutz drawing the
attention of the lattice community to open problems in the physical (Nf > 1) theory [3, 4]. Since
these aspects are not directly related to the spontaneous breaking of the chiral symmetry, they find
an equivalent in the single flavor theory. The latter represents therefore a simple setup for their
investigation.

One question raised by Creutz [3], having a relevant phenomenologicalimpact, is whether it
is possible to define in an unambiguous way the case whereonequark (say theu quark) becomes
massless. The arguments against an unique definition of the massless limit [3] essentially rest
upon theU(1) anomaly and should therefore holda fortiori for the one flavor theory. A second
aspect is the possibility of a spontaneous breaking of CP in QCD for special choices of the quark
masses, conjectured for the first time by Dashen [5]. According to the Vafa-Witten theorem [6] a
prerequisite for the spontaneous breaking of a discrete symmetry is a non positive fermion measure,
which inNf = 1 QCD is possible for negative quark masses. The transition line is indeed expected
to be located [7] on the negative real quark mass axis in the extended complex parameter space. In
the case of the multi-flavor theory, the transition is excluded for physical values of the quark mass,
but its nearby presence can nevertheless affect numerical simulations on the lattice [4]. So the main
features of this transition are not of academic interest only.

Another intriguing aspect of one flavor QCD, emerging from string theory, is the connection
with theN =1 supersymmetric Yang-Mills theory (SYM). The equivalence of the two theories in
the bosonic sector [8] can be proven at the planar level of a particular large Nc limit (orientifold
large Nc limit) preserving balance between fermionic and bosonic degrees of freedom. Relics
of SUSY are therefore expected inNf = 1 QCD (with Nc = 3). A prediction of the orientifold
equivalence [9], already studied in the literature [2], concerns in particular the size of the quark
condensate.

Another important place where relics of SUSY inNf = 1 QCD can be investigated, considered
in more detail in this contribution, is the low-lying bound-state spectrum [10]. In SYM the mass
patterns are strongly constrained by SUSY. In particular low-energy models [11] predict a low-
lying chiral supermultiplet including two scalar particles with opposite parity.1 In Nf = 1 QCD
these two particles can be easily identified with theη and theσ meson (the former picking up
a mass through the anomaly). On the basis of the planar equivalence, their mass ratio including
O(1/Nc) corrections is expected to bemσ/mη = Nc/(Nc−2) [14].

1For recent lattice simulations ofN =1 SYM, see [12, 13].
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Hadron spectrum of QCD with one quark flavor

The study of the mass spectrum of hadronic states requires reasonably large physical volumes,
in order to be able to accommodate the bound-states in the finite box, and small (positive) quark
masses. High statistics is required for a precise determination of the disconnected quark diagrams
needed for the scalar meson masses, which are characterized by a high level of noise. High statis-
tics is also important for the computation of the glueball masses. We apply here the Wilson lattice
fermion action which has recently been shown [15, 16, 17, 18] to be well suited for such an in-
vestigation. Preliminary results with Stout-smeared links [19] in the Wilson fermionaction will
be also presented. Following [18] we apply in the gauge sector the tree level improved Symanzik
action (tlSym).

The present exploratory study has been performed on 123 ·24 and 163 ·32 lattices with a lattice
spacing corresponding in QCD units toa ' 0.19fm anda ' 0.13fm, respectively. (We use the
Sommer parameter [20]r0 for setting the scale, fixed at the conventional valuer0 ≡ 0.5fm.) For
the future we plan to run simulations closer to the continuum limit.

As already mentioned, the sign of the quark determinant is an important issue inNf = 1 QCD
(in particular, a negative determinant triggers the CP-violating phase transition). In the continuum,
the fermion determinant is positive for positive quark mass. With Wilson lattice fermions for small
quark masses, it can become negative due to quantum fluctuations. In mostof our simulations the
quark mass is large enough to prevent sign changes and the occurrence of a negative determinant is
a rare event. For the lightest simulated quark masses however the sign of thequark determinant may
potentially play a role and its impact in the hadron spectrum must be checked. In our simulations
we could reach quite small quark masses down tomq ' 12MeV (mqr0 ' 0.03), corresponding to a
pion massmπ ' 270MeV.

As we have argued in [10], it is useful to embed theNf = 1 QCD theory in apartially quenched
theory with additional quark flavors. A particularly symmetric choice consistsin taking the (NV)
valencequark flavors degenerate with theseaquark: in this case the combined sea and valence
sector is characterized by an exact SU(NV +1) flavor symmetry. In this fictitious multi-flavor theory
a PCAC quark mass can be naturally defined. We take this quantity as an operative definition of the
quark mass for the (unitary) one-flavor theory. Also, a partially quenched chiral perturbation theory
(PQChPT) can be set-up, exactly as in theNf > 1 case. The latter reduces to an effective theory of
theη meson in the unitary sector without valence quarks. The predictions of this PQChPT will be
compared against our numerical data.

The plan of this contribution is as follows: in the next section the partially quenched viewpoint
is introduced and PQChPT is considered for it. In Section 3 some information on the simulation
algorithm and on the computation of the sign of the determinant are given. Section 4 is devoted
to the presentation of our numerical results on the hadron spectrum, while Section 5 discusses the
partially quenched data. The last section contains summary and outlook.

2. Partially quenched QCD

The symmetry of the one flavor theory can be artificially enhanced by addingextra valence
quarks which arequenched, namely not taken into account in the Boltzmann-weight of the gauge
configurations by their fermion determinants. A theoretical description of theresulting partially
quenched theory can be obtained through the introduction of ghost quarks [21]. In this method the
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Hadron spectrum of QCD with one quark flavor

functional integral over the ghost quark fieldsψ̃ cancels the fermion determinant of the valence
quarksψV ,

∫

DAD [ψSψ̄S] D [ψVψ̄V ]D [ψ̃ ¯̃ψ] e−Sg−ψ̄S(γµ Dµ+mS)ψS−ψ̄V(γµ Dµ+mV)ψV− ¯̃ψ(γµ Dµ+mV)ψ̃

=
∫

DA e−Sg
det(γµDµ +mV)

det(γµDµ +mV)
det(γµDµ +mS) , (2.1)

and only the determinant of the sea (S) quark remains in the measure. In principle, one might
consider any number of quenched valence quarks with any mass values.In our approach we take
two valence quarksu andd with massesmV and one sea quarks with massmS. For our purpose
the case of degenerate valence and sea quark massmV = mS is particularly convenient (which is
admittedly an unconventional kind of partially quenching). Observe that in this symmetric setup
the exact number of valence quarksNV is immaterial, so our positionNF ≡ NV + Nf = 2+ 1 is
just suggested by analogy with the case realized in nature. (Of course, inorder to be able to build
bound states containing two different quark flavors as mesons and nucleons, one needsNV ≥ 1.)

At the point of vanishing quark masses (see below) the generic partially quenched theory has
a graded SU(NF |NV)L ⊗ SU(NF |NV)R symmetry, which is broken spontaneously into a “flavor”
symmetry SU(NF |NV), also valid for non-vanishing degenerate quark masses. The SU(NF) sub-
group represents the flavor symmetry in the combined sea and valence quark sectors. The latter
symmetry implies that the hadronic bound states appear in exactly degenerate SU(NF ) multiplets
for mV = mS.

In particular, this extended theory contains a degenerate octet of pseudoscalar mesons (“pions”
πa, a = 1, . . . ,8) satisfying an SU(3)-symmetric PCAC relation. Considering the divergence of the
axial-vector currentAa

xµ and pseudoscalar densityPa
x we can define the barePCAC quark massin

lattice units as usual

amPCAC ≡
〈∂ ∗

µA+
xµ P−

y 〉
2〈P+

x P−
y 〉 . (2.2)

Here the indices+ and− refer to the “charged” components corresponding toλa± iλb (with λa,b

some off-diagonal Gell-Mann matrices) and∂ ∗
µ denotes the backward lattice derivative. Due to the

exact SU(3)-symmetry, the renormalized quark mass corresponding tomPCAC can be defined by an
SU(3)-symmetric multiplicative renormalization:

mR
PCAC =

ZA

ZP
mPCAC . (2.3)

As we will confirm numerically in sec. 5, the masses of the “pions” can be madeto vanish
by suitably tuning the bare quark mass on the lattice. In this situation the renormalized quark
mass (2.3) vanishes, too. We stress here that the pions are not particles inthe physical spectrum
of the theory. Nevertheless their properties as mass and decay constantare well defined quantities
which can be computed on the lattice. The same applies for the PCAC quark massmR

PCAC which can
be therefore regarded as a potential candidate for a definition of the quark mass in this theory.

2.1 Chiral perturbation theory

The dependence of pion properties upon the quark masses can be determined in partially
quenched chiral perturbation theory (PQChPT) [22, 23]. The effect of the finite lattice spacing
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a can be also included [24, 25, 26, 27, 28]. The pseudo-Goldstone fields are parameterized by a
graded matrix

U(x) = exp

(

i
F0

Φ(x)

)

, (2.4)

which in our case is in the supergroup SU(3|2). (The normalization ofF0 is chosen such that its
phenomenological value is' 86MeV.) The commuting elements of the graded matrixΦ represent
the pseudo-Goldstone bosons made from a quark and an anti-quark with equal statistics, while the
anticommuting elements represent pseudo-Goldstone fermions which are builtfrom one fermionic
quark and one bosonic quark. The supertrace ofΦ has to vanish, which can be implemented by a
suitable choice of generators [29].

We have calculated both the masses and decay constants of the pseudo-Goldstone bosons in
next-to-leading order of partially quenched chiral perturbation theory along the lines of Ref. [29],
includingO(a) lattice artifacts [26]. The quark masses enter the expressions in the combinations

χV = 2B0mV , χS = 2B0mS, χPCAC = 2B0mR
PCAC (2.5)

with the usual leading order low-energy constantB0; the lattice spacing enters in the combination

ρ = 2W0a, (2.6)

whereW0 is another, lattice-specific, low-energy constant. We have calculated the masses of the
pions and mixed mesons (degenerate in the special casemV = mS). The next-to-leading-order
expression in terms of the (renormalized) PCAC quark mass is

m2
π = χPCAC +

χ2
PCAC

16π2F2
0

ln
χPCAC

Λ2 +
8

F2
0

[

(2L8−L5 +2L6−L4)χ2
PCAC

+(W8 +W6−W5−W4−2L8 +L5−2L6 +L4)χPCACρ
]

, (2.7)

where the usual next-to-leading order low-energy parametersLi appear, together with additional
ones (Wi) describing lattice artifacts. For the decay constant we obtain in this case

Fπ = F0 ·
{

1− χPCAC

32π2F2
0

ln
χPCAC

Λ2 +
8

F2
0

[

(L5 +L4)χPCAC+(W5 +W4−L5−L4)ρ
]

}

. (2.8)

Observe that as expected the results are independent ofNV . In particular, calculating the quan-
tities in this model withNV = 1, which corresponds to a representation the supergroup SU(2|1),
reproduces (2.7) and (2.8).

The analysis can be extended by relating the pion mass to the mass of the “physical” η . The
inclusion of the singlet can be achieved by relaxing the constraint of a vanishing supertrace [22, 29],
and associating it with the field

Φ0(x) = sTrΦ(x). (2.9)

The effective Lagrangian then contains additional terms depending onΦ0:

∆L = α∂µΦ0∂µΦ0 +m2
ΦΦ2

0 +O(Φ3
0) , (2.10)

5
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whereα andmΦ are free parameters in this context. We will use in the following the leading order
expression for the mass of theη , which reads

m2
η =

m2
Φ + χPCAC

1+α
. (2.11)

Our numerical results formη allow to determineα andmΦ (see Section 5).

3. Simulation

For the SU(3) gauge sector we apply the tree-level improved Symanzik (tlSym) action [30]
including planar rectangular(1×2) Wilson loops:

Sg = β ∑
x

(

c0

4

∑
µ<ν; µ,ν=1

{

1− 1
3

ReU1×1
xµν

}

+c1

4

∑
µ 6=ν; µ,ν=1

{

1− 1
3

ReU1×2
xµν

}

)

, (3.1)

with c1 =−1/12 and normalization conditionc0 = 1−8c1. The fermionic part of the lattice action
is the simple (unimproved) Wilson action. With the goal of improving the stability of theMonte
Carlo evolution at small quark masses, we also started simulations with Stout-smeared links [19]
in the hopping matrix (see below).

The update algorithm is a Polynomial Hybrid Monte Carlo algorithm (PHMC) [31, 32] allow-
ing the simulation of an odd number of fermion species. The present version[33] is based on a
two-step polynomial approximation of the inverse fermion matrix with stochastic correction in the
update chain: asequenceof PHMC trajectories is followed by a Metropolis accept-reject step with
a higher precision polynomial. The polynomial approximation scheme and the stochastic correc-
tion in the update chain are taken over from the two-step multi-boson algorithm of Ref. [34]. A
correction factorC[U ] in the measurement is associated with configurations for which eigenvalues
of the (squared Hermitian) fermion matrixQ2[U ] lie outside the validity interval of the polynomial
approximation. We refer to [10] for more details on the algorithmic setup.

As mentioned in the Introduction, the signσ [U ] of the fermion determinant detQ[U ] has also
to be included in the reweighting of the configurations. The expectation valueof a quantityA is
therefore given by

〈A〉 =

∫

[dU]σ [U ]C[U ]A[U ]
∫

[dU]σ [U ]C[U ]
. (3.2)

For the computation of the signσ [U ] we applied two methods. In the first we studied thespec-
tral flow of the Hermitian fermion matrix [35]. For theκ-dependent computation of the low-lying
eigenvalues of the Hermitian fermion matrixQ[U ] we followed in this case Ref. [36]. Alternatively,
we computed the (complex) spectrum of the non-Hermitian matrix concentrating on the lowest real
eigenvalues: sign changes are signaled by negative real eigenvalues. We applied the ARPACK
Arnoldi routines [37] on a transformed Dirac operator. The (polynomial)transformation was tuned
such that the real eigenvalues were projected outside the ellipsoidal bulk containing the whole
eigenvalue spectrum [38]. This allows for an efficient computation of the real eigenvalues [39].
This latter method, on which we will rely in the future, delivers unambiguous results and can be
simply automatized.

6
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Table 1: Summary of the runs: 123 ·24 and 163 ·32 lattices have lowercase and uppercase labels, respec-
tively. The bar indicates runs with Stout-link in the fermion action (see text).

β κ Nconf plaquette τplaq r0/a

a 3.80 0.1700 5424 0.546041(66) 12.5 2.66(4)

b 3.80 0.1705 3403 0.546881(46) 4.6 2.67(5)

c 3.80 0.1710 2884 0.547840(67) 7.6 2.69(5)

A 4.00 0.1600 1201 0.581427(36) 4.3 3.56(5)

B 4.00 0.1610 1035 0.582273(36) 4.1 3.61(5)

C 4.00 0.1615 1005 0.582781(32) 3.3 3.73(5)

Ā 4.00 0.1440 5600 0.577978(23) 9.7 3.74(3)

B̄ 4.00 0.1443 5700 0.578167(28) 11.3 3.83(5)

3.1 Simulation details

We performed simulations on a 123 ·24 lattice withβ = 3.8 and on a 163 ·32 with β = 4.0.
Information regarding the generated sets of configurations are reported in Table 1.

The sequences consisted of 3–6 PHMC individual trajectories. The precision of the first step
of polynomial approximations was tuned such that the acceptance of the PHMC trajectories was
about 0.80–0.85. The same acceptance was required for the Metropolis test by tuning the total
length of the trajectory (1.5–1.8). This resulted in a relatively high total acceptance of 0.64–0.72.
Optimization of the parameters of PHMC turned out to have a substantial impact on the integrated
autocorrelation times of the average plaquette.

In the case of a Stout-link we consider one step of isotropic smearing withρµν = ρ = 0.15,
µ,ν = 1, . . . ,4. The Stout-smearing has in general the beneficial effect, compared to the unsmeared
action, of reducing the fluctuations of the smallest eigenvalue of the (squared) hermitian matrix,
with the result that less exceptional configurations are observed. This allowed us to obtain smooth
simulations down to quite small pion massesmπ ' 270 MeV.

Taking the values ofr0/a at the highestκ ’s for the runs atβ = 3.8 andβ = 4.0 and fixing
r0 = 0.5 fm by definition we obtaina= 0.186fm anda= 0.134 fm, respectively. The extensions of
the 123 and 163 lattices are roughly constant:L = 2.23 fm andL = 2.14 fm. (The Stout-smearing
leavesr0/a essentially unchanged.)

For runsb, c, Ā andB̄ there are cases where the eigenvalues of the fermion matrix are outside
the approximation interval[ε,λ ] and thereforeC[U ] 6= 1. In runc in particular there are 167 of such
configuration out of 2884, 26 of them with negative sign. However, even in this case the average
valueσ [U ]C[U ] is very near to one: 0.9842. The effect of the correction factors turnsout to be
quite weak in the case of the average plaquette and ofr0/a: the effect on the average value ofr0/a
is only in the fifth digit (whereas the statistical error is in the third digit). This is not the case for
low energy quantities as the low-lying hadron masses (see in the following).

7
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Table 2: Results for light hadron masses inNf = 1 QCD (the result with the asterisk has been obtained with
higher statistics: 4900). Note that the glueball masses were obtained at small time separations and hence
could be overestimated (see also text).

amη amσ am0++ am∆

a 0.462(13) 0.660(39) 0.777(11) 1.215(20)

b 0.403(11) 0.629(29) 0.685(10) 1.116(38)

c 0.398(28) 0.584(55) 0.842(16) 1.204(57)

A 0.455(17) 0.607(57) 1.083(79) 1.006(15)

B 0.380(18) 0.554(52) 1.032(66) 0.960(15)

C 0.316(22) 0.613(67) 0.943(41)∗ 0.876(26)

4. Hadron spectrum

4.1 Mesons

For the meson states we consider the simplest interpolating operators in the pseudoscalar and
scalar sectors:

η(0−) : P(x) = ψ̄(x)γ5ψ(x) , (4.1)

σ(0+) : S(x) = ψ̄(x)ψ(x) . (4.2)

Corresponding states in the QCD spectrum are theη ′(958) and f0(600) (or σ ). In the case of the
pseudoscalar mesons, invariance under the flavor group plays a special role when comparing with
QCD states because of the U(1) axial anomaly.

The disconnected diagrams of the hadron correlators ofη andσ were computed by applying
stochastic sources with complexZ2 noise and spin dilution. The method was already applied to the
case of lattice SYM [13]. In order to optimize the computational load, also considering autocor-
relations, we analyzed typically every fifth configuration, with 20 stochasticestimates each. The
resulting statistics is 400−600 on the smaller lattice and∼ 200 on the larger one.

4.2 Baryons

The simplest interpolating field in the baryon sector containing just one quarkfield is

∆i(x) = εabc[ψa(x)
TCγiψb(x)]ψc(x) . (4.3)

The low lying hadron state interpolated by the above operator is expected to have spin 3/2 and
positive parity(3

2
+
). This corresponds to the∆++(1232) of QCD if our dynamical fermion is

interpreted as anu quark (theΩ− baryon is more appropriate for larger quark masses).
A difficulty arises since the Rarita-Schwinger spinor (4.3) also contains a spin 1/2 component.

We extract the wanted spin 3/2 component by projection [40]:

G3/2(t) =
1
6

Tr [G ji (t)γ jγi +Gii (t)] , G ji (t) = ∑
~x

〈

∆ j(~x, t)∆̄i(0)
〉

. (4.4)

8
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Figure 1: The mass of the lightest physical particles in one-flavor QCDas a function of the bare PCAC
quark mass. The masses are multiplied by the scale parameterr0 in order to obtain dimensionless quantities.

Since the baryon correlator does not contain disconnected diagrams, our full statistics could be
taken for the computation of the masses in this case, namely 3000–4000 on the smaller lattice and
∼ 1000 on the larger one.

4.3 Glueballs

Spin 0 states are also projected by purely gluonic operators. These are the glueballs, a well
known object of investigation in lattice QCD. In particular the 0++ glueball has the same quantum
numbers as theσ meson. In this first investigation we neglect possible mixings between the two
states and consider only diagonal correlators.

We used the single spatial plaquette to obtain the mass of the 0++ ground state. To increase the
overlap of the operator with this state we performed APE smearing [41] and also applied variational
methods [42] to obtain optimal glueball operators from linear combinations of the basic operators.

4.4 Results

The results for the hadron masses (only available for the runs without Stout-smearing) are
reported in lattice units in Table 2. In Fig. 1 the hadron masses are plotted as a function of the
bare PCAC quark massmPCAC (2.3) defined in the partially quenched picture. Since we use physical
units here, results from the two lattice spacings can be compared. The scaling is satisfactory for
the case ofη , whose mass could be computed with the best accuracy. The determination oftheσ
meson mass seems to require large statistics.

The effect of the sign of the determinant in the hadron spectrum was investigated by computing
the masses with or without the inclusion of the sign factor in the reweighting procedure. Only in
the case of our run at the lightest quark mass, runc, a sizeable effect can be observed: here the sign
of the determinant pushes up the masses by 7−10%.
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Table 3: The PCAC quark massmPCAC, the pion massmπ and non-renormalized decay constantfπ , and the
nucleon massmN in lattice units (only for the runs without Stout-smearing).

amPCAC amπ a fπ amN

a 0.02771(45) 0.3908(24) 0.1838(11) 1.0439(54)

b 0.01951(39) 0.3292(25) 0.1730(15) 0.956(27)

c 0.0108(12) 0.253(10) 0.156(10) 1.011(51)

A 0.04290(36) 0.4132(21) 0.1449(9) 0.9018(44)

B 0.02561(31) 0.3199(22) 0.1289(10) 0.7978(53)

C 0.01700(30) 0.2635(24) 0.1188(12) 0.734(10)

Ā 0.01532(34) 0.2316(49) 0.09747(15)

B̄ 0.00886(75) 0.1994(74) 0.0852(49)

We observe that our statistics is not large enough to obtain an accurate estimate of the glue-
ball masses. In particular, the results reported in Table 2 could be overestimated. Indeed, due to
the high level of noise, large time-separations could not be included in the determinations; it is
therefore possible that the latter are contaminated by excited states. In order to enhance the statis-
tics we decided to store the gauge configuration more frequently (as was already applied for the
continuation of runC).

5. Partially quenched analysis

The results for the partially quenched sector are collected in Table 3 and shown in Figure 2.
This also includes the nucleon mass (only for the runs without Stout-smearing).

The partially quenched ChPT formulae are used to extract the corresponding low-energy co-
efficients from the pion data. Considering the number of lattice data at our disposal, a full fit
including all the terms in the ChPT formulae is not possible, so we take only the continuum terms
into account. We fitted the data for bothβ values simultaneously neglecting the dependence of the
renormalizations factorsZA andZP upon the lattice coupling constant. Introducing the one-flavor
low-energy constants

Λ3 = 4πF0exp{64π2(L4 +L5−2L6−2L8)} ,

Λ4 = 4πF0exp{64π2(L4 +L5)} , (5.1)

the fit formulae of the renormalized values reduce to

m2
π = χPCAC+

χ2
PCAC

16π2F2
0

ln
χPCAC

Λ2
3

,

f R
π

F0
√

2
= 1− χPCAC

32π2F2
0

ln
χPCAC

Λ2
4

. (5.2)

10



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
7
)
1
3
5

Hadron spectrum of QCD with one quark flavor

 0

 1

 2

 3

 4

 0  0.05  0.1  0.15

r 0
m

r0mPCAC

N, β=3.8
π, β=3.8
N, β=4.0
π, β=4.0

Figure 2: The mass of the valence pion and nucleon as a function of the bare PCAC quark mass.

The data and the fitted curves are shown in Fig. 3.
In order to improve the numerical results for the universal low-energy constantsΛ3,4, which

do not explicitly depend on the lattice spacinga, we also performed fits to the ratios [43, 15]

m2
π

m2
π,ref

,
fπ

fπ,ref
. (5.3)

For this calculation we restricted ourself to the data atβ = 4.0 with reference point atκ = 0.1615.
We obtain in this case the results

Λ3

F0
= 10.0±2.6, (5.4)

Λ4

F0
= 31.5±14.3, (5.5)

which, interestingly, are compatible with phenomenological values obtained from ordinary QCD [44].
The errors are however quite large (we hope to improve these determinations in the future).

In addition, we investigated the relation between the mass of the pion and of the physicalη ,
reducing to formula (2.11) at leading-order. For this purpose we fitted simultaneouslym2

π andm2
η

as a function of the PCAC quark mass, again considering onlyβ = 4.0. This yields to

α = −0.03(19) , amΦ = 0.18(8) , (5.6)

suggesting a vanishingα . Using the value ofr0/a extrapolated to vanishing PCAC quark mass and
settingα = 0 we find

amΦ = 0.19(2) or r0mΦ = 0.72(10) , (5.7)

which means
mΦ = 284±40MeV (5.8)
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Figure 3: Pion masses squared and pion decay constants in lattice units and the results of the PQChPT fit.

in physical units.

The value ofmΦ can also be obtained from the Witten-Veneziano formula [45]

m2
Φ =

4Nf

( f R
π )2 χt (5.9)

valid at leading-order in the (’t Hooft) largeNc limit. An estimate of the quenched topological
susceptibility present in the literature isχt = (193±9MeV)4 [46]. Using our value forf R

π , which
is subject to a sizeable statistical error, one would obtainmΦ = 450±170 MeV.

6. Summary and outlook

This first Monte Carlo investigation ofNf = 1 QCD reveals the qualitative features of the low
lying hadron spectrum of this theory. The lightest hadron is the pseudoscalarη meson (see Table 2
and Figure 1) while the scalar meson, theσ , is about a factor 1.5 heavier. It is interesting to compare
our data with the estimate in [47]mσ/mη ' Nc/(Nc− 2) = 3 for Nc = 3. The above prediction
applies for the massless theory and one could expect the agreement to improve for smaller quark
masses. Our bare quark masses (estimated from the PCAC quark mass in the valence analysis)
range between 10 MeV and 60 MeV, while the lightest pion mass is∼ 270 MeV.

The lightest baryon, the∆ (3
2
+
), is by about a factor 3 heavier than theη meson. The lightest

scalar mass obtained with a glueball 0++ operator lies between theσ meson and the∆ baryon
mass. However, this mass could be overestimated, since, due the high level of noise, only small
time-separations could be included in the analysis.

In general, the mass measurements have relatively large errors between 3–10%. In order to
obtain more quantitative results, larger statistics and smaller quark masses arerequired. We hope
to be able to make progresses in both directions [48] with our new simulations using Stout-smeared
links in the fermion action. Some preliminary results were already presented in this contribution
(see [49] for a test of this formulation in twisted mass QCD withNf = 2).
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The introduction of a partially quenched extension of the single flavor theory with valence
quarks allows to define the bare quark mass in terms of the PCAC quark mass of the fictitious
multi-flavor theory. The computation of the bare quark mass is intricate in the unitary theory due
to the absence of a chiral symmetry (the arguments of [3] regard the definition of a renormalized
quark mass). Comparison of lattice data with partially quenched chiral perturbation theory allowed
the determination of some of the low-energy constants of the chiral Lagrangian. The latter are
compatible, even if with large error, with recent lattice determinations forNf = 2 QCD.

A further direction of investigation for the future [48] is the CP-violating phase transition
expected at negative quark masses [7]. For this aspect of the single flavor theory the non-positivity
of the fermion measure plays an essential role.
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