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1. Introduction

In recent years, there has been a great deal of progress in probing the structure of the nucleon
on the lattice. With few exceptions, however, such studies have been restricted to the calculation
of isovector quantities or otherwise neglect the contribution of “disconnected diagrams,” due to the
large cost associated with their calculation. The full inclusion of such contributions is necessary,
however, to complete the picture of the nucleon, and with new methods and the computational
resources now available, it appears that the time may be ripe to do so.

In this contribution, we focus on a family of observables whose matrix elementsare inherently
disconnected, the strange quark contribution to the elastic form factors ofthe nucleon. Such a
matrix element is shown schematically in Fig. 1; by “disconnected,” we mean thatthe diagram
includes an insertion on a quark loop that is coupled to the baryon correlator only via the gauge
field. This requires the calculation of a trace of the quark propagator over spin, color, and spatial
indices. Since an exact calculation would require a number of inversions proportional to the lattice
volume, the trace is generally estimated stochastically, which introduces a new source of statistical
error whose reduction is discussed in section 2. In particular, we propose a novel method for
variance reduction based on the subtraction of the coarse-grid operator as defined in an adaptive
multigrid scheme.

The strange contribution to the electromagnetic and axial form factors,Gs
E(Q2), Gs

M(Q2), and
Gs

A(Q2), are the subject of much experimental interest but remain poorly determinedto date. For
a review and recent determination, see Ref. [1]. The scalar form factor, Gs

S(Q
2), is not directly

accessible to experiment, but nevertheless plays an important role in models of nucleon structure.
Several lattice calculations of these quantities have been attempted, primarily in the quenched
approximation and with varying degrees of success (see, for example, Ref. [2, 3, 4, 5, 6, 7, 8,
9, 10]). In this contribution, we discuss the outlook for a calculation of the strange form factors
on large, unquenched, anisotropic lattices. We also present preliminary results from an exploratory
calculation of the axial and scalar form factors atQ2 = 0.

The paper is organized as follows. In section 2, we discuss general considerations for cal-
culating the trace and describe the particular approach employed in our exploratory calculation.
We also outline a multigrid method for variance reduction. In section 3, we discuss our approach

Figure 1: Schematic representation of a disconnected diagram, giving a strange form factor of the proton.
HereΓ is the appropriate gamma insertion for the form factor of interest.
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for extracting the form factors from the corresponding matrix elements. Finally, in section 4 we
present preliminary results forGs

A(Q2 = 0) andGs
S(Q

2 = 0).

2. Trace estimation

2.1 Noisy estimators and dilution

The standard method for estimating the trace relies on calculating the inverse against a set of
noise vectorsη whose components are random elements ofU(1) or Z2 [11], as follows:

Tr(ΓD−1) ≈ 1
N

N

∑
i=1

η†
i ΓD−1ηi , 〈η†

(x)η(y)〉 = δx,y . (2.1)

Given a finite ensemble of such noisy sources, this procedure introduces a new source of statisti-
cal error due to the off-diagonal terms that do not cancel exactly. Since the fall-off of the quark
propagator is exponential, this error is dominated by the “near off-diagonals,” terms that connect
points local in space (we treat the sum over color and spin exactly). It follows that one may greatly
reduce this error viadilution, i.e. by dividing the stochastic source into subsets and inverting on
these separately [12]. For example, with simple even/odd dilution,

Tr(ΓD−1) ≈ 1
N

N

∑
i=1

η(e)†
i ΓD−1η(e)

i +
1
N

N

∑
i=1

η(o)†
i ΓD−1η(o)

i . (2.2)

Hereη(e)
i andη(o)

i are non-zero only on the even and odd sites, respectively, andη (e)
i + η(o)

i = ηi

gives the original noise vector.
In a full calculation, one faces two sources of error: the usual gaugenoise and the error in

the trace. As a baseline in our exploratory calculation, we largely eliminate the second source of
error by calculating a “nearly exact” trace on each of four time-slices. This is accomplished by
employing a large number of sources (1024×12 for color/spin) where each source is nonzero on
only four sites on each of the four time-slices. The sites are chosen such that the smallest spatial
separation between them is 8

√
2as. Any residual contamination, which we observe to be small, is

gauge-variant and averages to zero. As an aside, we note that this approach is equivalent to using a
single noise vector (or more precisely, a set of three vectors over space and color that are mutually
orthogonal in color) together with “extreme dilution.”

2.2 Multigrid variance reduction

A number of methods have been proposed to reduce “far off-diagonal”contributions to the
variance in estimates of the trace (e.g. Ref. [13] in these proceedings). Such contributions become
increasingly important if we are to consider light quarks. A particularly promising approach is to
calculate the trace exactly in the subspace spanned by the lowest eigenmodesof the Dirac opera-
tor [14] and estimate the remaining piece stochastically [15]. In addition to reducing the variance,
this method has the advantage that the set of eigenvectors, once calculated, may also be used to
precondition the inverter and speed up the large number of inversions needed for the remaining
piece.
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Recently, an adaptive geometric multigrid algorithm was shown to greatly reduce critical slow-
ing down in the two-dimensional U(1) Schwinger model [16] (see also Ref.[17] in these proceed-
ings). The method generalizes straightforwardly to four dimensions, and like eigenvector pro-
jection, it is most advantageous when the set-up cost may be amortized over alarge number of
inversions, as is typical for disconnected diagrams. (The methods proposed in Refs. [18, 19, 20]
have similar advantages.) Even more promising for this application, however,is the possibility of
greatly reducing the variance in stochastic estimates of the trace by first subtracting the inverse
calculated on the coarse level. Following Ref. [16], we define a coarse approximationÃ = P†AP
to the positive definite operatorA = D†D, whereP is the prolongator that takes vectors from the
coarse to the fine grid andP† is the corresponding restriction operator. The inverseÃ−1 can be
calculated inexpensively, and hence the operatorPÃ−1P† can be used in an approximation to the
full trace, i.e. Tr(ΓD−1) ≈ Tr(ΓPÃ−1P†D†). Employing the cyclic property of the trace, we have
Tr(ΓPÃ−1P†D†) = Tr(Ã−1P†D†ΓP). This is now the trace of an operator on the coarse grid, which
can be determined at a much smaller cost, either stochastically or exactly. At thesame time, it cap-
tures the long-range physics and should give a very good estimate of the full trace. For an unbiased
estimate, we require the residual contribution on the fine grid, but this contribution is expected to be
small and may be estimated with a smaller number of (possibly diluted) noise vectors, N, without
significantly affecting the variance. An unbiased estimate of the full trace is thus given by

Tr(ΓD−1) ≈ 1
N

N

∑
i=1

η†
i

[

ΓD−1−ΓPÃ−1P†D†]ηi +
1

Ñ

Ñ

∑
i=1

η̃†
i

[

Ã−1P†D†ΓP
]

η̃i . (2.3)

HereÑ is the number of noise vectors̃η on the coarse grid. We note, however, that given the large
reduction in degrees of freedom, it will often be practical to calculate the second term exactly.

The multigrid method of Ref. [16] may be generalized to work with the Dirac operator D
directly, rather thanA = D†D. In this case the restriction operator is no longer the conjugate of the
prolongation operator, but the basic variance reduction method goes through as before. Work is
underway to apply this method as a post-processing step to the results reported below.

3. Extracting form factors

Given an estimate of the trace on each of an ensemble of configurations, thenext step is to
correlate these with the proton correlator to calculate the form factors. A number of methods exist
for doing so. Those that have been used to date rely on having an estimate of the trace on many
adjacent time-slices. In the most basic approach, the trace is calculated over the entire lattice, and
the form factor is extracted from the time-dependence of the proton correlator, correlated with this
background. Here we take a more direct approach by inserting the quark loop on a single time-
slice, labeled byt ′, at the midpoint of the proton correlator (see Fig. 1). The source and sink are
moved apart symmetrically, witht f − t ′ = t ′− t0, and we look for a plateau at large separations.
More concretely, for the axial form factor atQ2 = 0, we calculate

RA(t, t ′, t0) =
1
3

3

∑
i=1

∑~x,~x′ [(1+ γ4)γiγ5]
αβ [〈Pβ (~x, t)Ai(~x′, t ′)P̄α(~0, t0)〉−〈Pβ (~x, t)P̄α(~0, t0)〉〈Ai(~x′, t ′)〉]

∑~x(1+ γ4)αβ 〈Pβ (~x, t)P̄α(~0, t0)〉
→ Gs

A(Q2 = 0) for (t − t ′) = (t ′− t0) large. (3.1)
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Figure 2: Results for axial form factor, withRA as
defined in the text.

0 5 10 15
(t - t’)/a

t
 = (t’ - t

0
)/a

t

-1

0

1

2

3

4

R
S(t

, t
’, 

t 0)

Figure 3: Results for scalar form factor, withRS as
defined in the text.

Because the expectation value of the axial current vanishes, the subtraction of the second term is
not formally required, but it may serve to cancel contributions to the error.For the scalar form
factor, the subtraction of the nonvanishing condensate is necessary, and we have

RS(t, t
′, t0) =

∑~x,~x′(1+ γ4)
αβ 〈Pβ (~x, t)[ψ̄ψ(~x′, t ′)]P̄α(~0, t0)〉

∑~x(1+ γ4)αβ 〈Pβ (~x, t)P̄α(~0, t0)〉
−∑

~x′
〈ψ̄ψ(~x′, t ′)〉

→ Gs
S(Q

2 = 0) for (t − t ′) = (t ′− t0) large. (3.2)

It is important to note that if one has found the trace on multiple time-slices, this information is
not wasted, since one can repeat the measurement with the system centered at various points in the
lattice and thereby increase the statistics. For the results presented below, we have employed four
evenly-spaced timeslices.

4. Preliminary results

At present, we are preparing to calculate disconnected diagrams on largeanisotropic lattices
with Nf = 2+ 1 dynamical flavors of clover-improved Wilson fermions. These lattices arebeing
generated by members of the Lattice Hadron Physics Collaboration (LHPC) for the purpose of
studying excited-state spectroscopy (see, e.g., Ref. [21] in these proceedings). Significant effort is
being invested to construct improved variational sources for the nucleonon these lattices, and we
plan to utilize these to improve the signal for the disconnected form factors.

In preparation for this calculation, we have performed an exploratory study on a smaller plain-
Wilson test lattice of size 163×64 with two dynamical flavors andMπ ≈ 360 MeV. The lattice is
anisotropic withas = 0.118(2) fm ≈ 3at , and we have analyzed 351 independent configurations.
Proton correlators were calculated with gaussian smearing at source andsink, and we find that the
ground state is isolated neart = 10a.

Fig. 2 shows our preliminary results for the strange contribution to the axial form factor, as
defined in Eq. (3.1). Errors have been calculated via jackknife. We observe significant correlation
at small time separations, but fort > 5at the results are consistent with zero. Our analysis is still in
progress, but it appears that it may only be possible to set a limit, given the statistics available for
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Figure 4: Confirmation of correlation in axial chan-
nel.
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Figure 5: Confirmation of correlation in scalar
channel.

this ensemble. The rapid disappearance of the signal serves as a strongargument for the importance
of better extended sources for the nucleon.

The prospects for the scalar form factor are more promising, as shown inFig. 3. Here the signal
persists for all time separations. The increase at large times is anomalous andpossibly represents a
finite size effect, since at(t − t ′) = 16at the proton correlator extends halfway across the lattice.

As shown by these and past results, the evaluation of disconnected diagrams remains a very
challenging problem. Schematically, we are calculating a correlation (cf. Eq.(3.1),(3.2)),

〈nucleon× trace〉−〈nucleon〉〈trace〉
〈nucleon〉 , (4.1)

that is observed to be small compared to the characteristic fluctuations in the trace and nucleon
correlator. As a “sanity check,” we confirm that our signal is genuine by shifting configurations
and purposely correlating the nucleon on theith configuration with the trace on the(i + s)th. As
shown in Figs. 4 and 5, the signal vanishes as expected.

5. Conclusions

Disconnected diagrams represent a considerable challenge for the lattice, but they are cen-
tral to a wide range of physical problems. Among these is the strange quarkcontribution to form
factors of the nucleon. By applying both new and established techniques,we hope to obtain ac-
curate, unquenched determinations of these quantities. Preliminary results are encouraging, and
should only improve with increased statistics, better interpolating operators for the nucleon, and
the implementation of multigrid variance reduction.
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