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1. Introduction

‘Rare decays’ of B mesons, such as B→ K∗γ , B→ K∗µ+µ−, B→ ργ , . . . where b→ sγ are
flavour changing neutral current or FCNC processes and are thus not allowed at tree level by the
GIM mechanism. However this makes them sensitive to higher scales, and may affect various CKM
matrix elements, such as Vts or Vtd . These exclusive events can be investigated at the LHC by the
LHCb experiment. A theoretical framework is provided by QCD factorisation, eg, [1, 2], (which
is a heavy quark expansion in 1/mb), perturbative QCD [3], soft-collinear effective theory [4] or
light-cone sum rules [5]. These give a decay amplitude related to vector distribution amplitudes or
vector DAs. These are usually defined in the MS scheme at some scale µ . In this article we compute
using lattice QCD the lowest moment of the K∗ DA. Analogous computations have recently been
performed for the spin 0 particles π and K, [6, 7].

As we have vector particles, with a polarisation vector, we have two distinct DAs: φ ‖(ξ )

and φ⊥(ξ ). These are functions of ξ ∈ [−1,+1], where x = 1
2(1 + ξ ) and 1− x = 1

2(1− ξ ) are
the fractions of meson momentum carried by the quark and anti-quark respectively (in the infinite
momentum frame). An expansion in terms of Gegenbauer polynomials

φ ‖,⊥(ξ ) = φ asymp(ξ )

(
1+

∞

∑
1

a‖,⊥n (µ)C3/2
n (ξ )

)
,

with

φ asymp(ξ ) =
3
4
(
1−ξ 2) ,

allows (possible) reconstruction of the full DA. In particular as a‖,⊥n → 0 when µ → ∞, we might
hope that knowledge of the lowest lowest few a‖,⊥n coefficients suffices. Indeed the lattice compu-
tation is only capable of giving low moments of DAs, defined by

〈ξ n〉‖,⊥ =
∫ 1

−1
dξ ξ nφ ‖,⊥(ξ ,µ) ,

where a‖,⊥1 = 5/3〈ξ 〉‖,⊥, a‖,⊥2 = 7/12(5〈ξ 2〉‖,⊥−1), . . . . As Gegenbauer polynomials are orthog-
onal polynomials with weight 1−ξ 2 and as C3/2

0 = 1 then the normalisation is such that 〈1〉‖,⊥ = 1.
Finally we note that G-parity restricts the functional form of φ ‖,⊥ρ to an even function of ξ and so
non-zero moments are 〈ξ 〉K∗ , 〈ξ 2〉K∗ , 〈ξ 2〉ρ , . . ..

2. Minkowski matrix elements

Longitudinal matrix elements are given by

Sµ0µ1···µn〈0|Ô (M )µ0µ1···µn |V,~p,λ 〉= imV F‖V Sµ0µ1···µn

[
ε (M )µ0

λ p(M )µ1 p(M )µ1 · · · p(M )µn

]
〈ξ n〉‖ ,

with

O
(M )µ0µ1···µn = inqγ (M )µ0

↔
D

(M )µ1↔
D

(M )µ2
· · ·
↔
D

(M )µn

u ,
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where q = d or s, S means symmetrised and traceless in these indices,
↔
D=

→
D −

←
D and λ is the

polarisation index. Correspondingly transverse matrix elements are given by

Sµ0µ1···µn〈0|Ô (M )νµ0µ1···µn |V,~p,λ 〉=

iF⊥V Sµ0µ1···µn

[
(ε (M )ν

λ p(M )µ0− ε (M )µ0
λ p(M )ν)p(M )µ1 · · · p(M )µn

]
〈ξ n〉⊥ ,

(where σ (M )µν = 1
2 [γ (M )µ ,γ (M )ν ]) with operators

O
(M )νµ0µ1···µn = inqσ (M )νµ0

↔
D

(M )µ1↔
D

(M )µ2
· · ·
↔
D

(M )µn

u .

This all looks rather complicated, but for no derivatives (n = 0) the equations reduce to the familar
ones for the F‖,⊥V decay constants, namely

〈0|V̂ (M )µ0 |V,~p,λ 〉= imV F‖V ε (M )µ0
λ , V (M )µ0 = qγ (M )µ0u ,

and

〈0|T̂ (M )νµ0 |V,~p,λ 〉= iF⊥V (ε (M )ν
λ p(M )µ0− ε (M )µ0

λ p(M )ν) , T (M )νµ0 = qσ (M )νµ0u .

Thus we see that these equations have been normalised with F ‖,⊥V to ensure, as required, that
〈1〉‖,⊥ = 1.

3. The Lattice

On the lattice we need a careful choice of lattice operators to avoid mixing with same di-
mension operators, and worse mixing with lower dimensional operators when 1/a subtractions are
required. We shall consider only n = 1 operators here, the list [8] used is

n Operator Representation
1 O

‖,a
i = O{i4} τ(6)

3 , C = +

1 O‖,b = O44−
1
3 ∑i Oii τ(3)

1 , C = +

for the longitudinal operators, where Oµ0µ1···µn = qγµ0

↔
Dµ1

↔
Dµ2 · · ·

↔
Dµn u and

n Operator Rep.
1 O

⊥,a
i j = Oi j4 +Oi4 j−O4i j−O4 ji, i 6= j τ (8)

2 , C = +

1 O
⊥,b
i = Oi44−

1
2 ∑ j Oi j j τ(8)

1 , C = +

for the transverse operators, where Oνµ0µ1···µn = qγνγµ0

↔
Dµ1

↔
Dµ2 · · ·

↔
Dµn u (ν 6= µ0). The operators

belonging to different (hypercubical) representations have been labelled by ‘a’ and ‘b’, and should
give the same results, at least in the continuum limit. (Further results, including n = 2 operators
will appear in [9].)

Correlation functions are then defined, where

COΩ(t;~p) = 〈Ô(t;~p)Ω̂(0;~p)†〉 ,

3
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with Ω =V or T , where to improve the signal these operators have been ‘Jacobi’ smeared. Then in-
serting complete sets of states in the standard way gives correlation functions involving 〈0|Ω̂|V,~p,λ 〉
and 〈0|Ô|V,~p,λ 〉. The unwanted 〈0|Ω̂|V,~p,λ 〉 may be cancelled by forming ratios. For example
we find for some of the (bare) operators

• Longitudinal
1
3 ∑iCO

‖,a
i Vi

(t;~p)

1
3 ∑iCViVi(t;~p)

= −
1
2EV

(
2E2

V +m2
V

E2
V +2m2

V

)
tanhEV ( 1

2 NT − t)〈ξ 〉‖a

C
O‖,bVi

(t;~p)
1
3 ∑iCViVi(t;~p)

= −
4
3 ipi

(
3E2

V

E2
V +2m2

V

)
〈ξ 〉‖b

• Transverse

C
O
⊥,a
lm Vn

(t;~p)

1
3 ∑iCTiVi(t;~p)

= 3iδln pm 〈ξ 〉⊥a
1
3 ∑iCO

⊥,b
i Vi

(t;~p)

1
3 ∑iCTiVi(t;~p)

= −EV

(
4E2

V −m2
V

3E2
V

)
cothEV ( 1

2 NT − t)〈ξ 〉⊥b

and similar expressions for the other operators as Ω (in the above V ) can also be replaced by T
giving further ratios. Thus many cross checks are possible. Note that the t fit function is known and
may be either tanh, coth or 1. Also half the n = 1 operators can be measured at zero momentum;
the others cannot. However for those operators a non-zero ratio requires only a single unit of
momentum in one direction. We choose the lowest possible momentum, |~p|= 2π/NS and average
over the three spatial directions.

We use unquenched n f = 2, O(a) improved clover fermions in our simulations, the lattices
employed being:

β κsea N3
S ×NT Trajs mps/mV mpsLS a[fm] LS[fm] mps[MeV]

5.29 0.1350 163×32 5700 0.76 6.7 0.075 1.20 1100
5.29 0.1355 243×48 2100 0.70 7.8 0.075 1.81 860
5.29 0.1359 243×48 4900 0.62 5.7 0.075 1.81 630

together with various κval for the valence quarks. Note that LS = aNS and mπ+/mρ+ ∼ 0.18. The
scale is set from the r0 force scale, using a value of of r0 = 0.467fm ≡ 1/422.5MeV. a is deter-
mined from extrapolating (r0/a) to the chiral limit (presently giving (r0/a)c(β = 5.29) = 6.20(3)).
No operator improvement has been attempted, although experience from quenched unpolarised op-
erators has indicated that these effects are probably small, [10].

A non-perturbative renormalisation – RI ′ −MOM method has been used to determine the
renormalisation constants. (ZRI−MOM is computed numerically and from this ZRGI is determined. This
is then converted to ZMS(µ = 2GeV), which is the scheme and scale that all our results are presented
here.) For more details see the forthcoming paper [11].

A (typical) result for the ratio is shown in Fig. 1, where we observe a clear tanh function.
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Figure 1: The ratio − 2
mV

1
3 ∑i COa

i Vi(t;~0)/ 1
3 ∑i CViVi(t;~0) ≡ 〈ξ 〉‖a tanhmV ( 1

2 NT − t) versus t for β = 5.29,
κsea = 0.1350, κval = (0.1355,0.1343), ~p =~0. The results are denoted by filled circles. Also shown is a
one parameter fit (the mV mass having been determined previously). The fit range is denoted by vertical
dashed lines. The operator has been renormalised to the MS scheme at µ = 2GeV, so that the value obtained
corresponds directly to a point in Fig. 2 (the sixth point from the left).

4. Results

As noted previously, odd moments vanish for degenerate mass (valence) quarks and thus we
have (mq2 < mq1)

〈ξ 〉‖,⊥ ∝ mq1−mq2 ∝ mq1 +mq2−2mq2

∝ m2
K ps−m2

ps ,

where mps is a pseudoscalar meson with degenerate mass quarks and mK ps is a pseudoscalar meson
with possibly non-degenerate mass quarks. (For the even moments, not considered here, there is
no such restriction and are just symmetric in the quark masses.) For 〈ξ 〉‖,⊥K∗ we first, for fixed msea,
plot 〈ξ 〉‖,⊥ against (valence pseudoscalar masses) m2

K ps−m2
ps and interpolate to the physical point

m2
K−m2

π , [6]. This is then taken as a function of msea ∝ m2
ps and extrapolated to the chiral limit to

give finally 〈ξ 〉‖,⊥K∗ .
In Fig. 2 we show 〈ξ 〉‖a versus m2

K ps−m2
ps together with a one-parameter fit passing through

the origin. Also shown (red star) is the value when m2
K ps−m2

ps = m2
K −m2

π . Fig. 3 shows the
corresponding results for 〈ξ 〉⊥a .

As discussed previously we must now extrapolate msea ∝ m2
ps to the chiral limit (the difference

between this and m2
π is negligible). In Fig. 4 we show this extrapolation for 〈ξ 〉‖a giving an estimate

for 〈ξ 〉‖K∗ . In Fig. 5 we show the equivalent picture for 〈ξ 〉⊥a leading to a value for 〈ξ 〉⊥K∗ .
This is repeated for other channels and we thus finally arrive at the (preliminary) results

〈ξ 〉‖K∗ ≈ 0.033(2)(4)

〈ξ 〉⊥K∗ ≈ 0.030(2)(8)
or a‖1K∗ ≈ 0.055(3)(7)

a⊥1K∗ ≈ 0.050(3)(13)

5
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Figure 2: 〈ξ 〉‖a versus m2
K ps−m2

ps in the MS scheme at µ = 2GeV for β = 5.9, κsea = 0.1350, ~p =~0 for
various valence quark combinations. A linear fit vanishing when the two valence quark masses are the same
is also shown. The red star shows the value when m2

K ps−m2
ps = m2

K−m2
π .
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Figure 3: 〈ξ 〉⊥a versus m2
K ps−m2

ps. Same notation as for Fig. 2. Note that here we work at finite momentum
|~p|= 2π/NS.
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Figure 4: 〈ξ 〉‖a versus m2
ps for the three sea quark masses κsea = 0.1350, 0.1355 and 0.1359 (black circles),

together with a linear extrapolation to the chiral limit (red circle).
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Figure 5: 〈ξ 〉⊥a versus m2
ps. Same notation as in Fig. 4.
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(in the MS-scheme at a scale of µ = 2GeV) where the first error comes from the spread of channels
presently analysed and the second error is an estimation of possible chiral extrapolation error (the
fit being repeated dropping one data point). Also any discretisation errors have been ignored.

These are to be compared with the results from sum rule estimates of a‖1K∗ ≈ 0.02(2), a⊥1K∗ ≈

0.03(3) [12] at the same scale, and the limit function φ asymp(ξ ) giving a‖,⊥1K∗ = 0. Potentially lattice
results are more reliable than sum rule estimates and may help in a reconstruction of the vector
distribution amplitude.

Our conclusion is that a lattice determination of (moments of) vector DAs is possible. We plan
to extend these results to lighter pseudoscalar masses, β = 5.40 (a finer lattice) and to 〈ξ 2〉‖,⊥ for
both the K∗ and ρ . Further results (including the zero moment decay constants) will appear in [9].
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