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We present our calculations of the electromagnetic form factor of pions. We explore the prop-
erties of pion form factor at momentum transfer larger than previous studies by including more
combinations of source and sink momenta and using more configurations.We fit our results using
vector meson dominance (VMD) hypothesis.
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1. Motivation

The pion form factor is often considered a good observable for studying the onset of the pertur-
bative QCD (pQCD)regime in exclusive processes. There are several reasons: First, the asymptotic
forms of the pion form factor at both large and small Q2 are known. At large Q2 it scales as
[1, 2, 3, 4, 5, 6, 7, 8, 9]

Fπ(Q2) =
8παs(Q2) f 2

π

Q2 as Q2 → ∞ (1.1)

while at small Q2, the pion form factor can be well described by the Vector Meson Dominance
(VMD) Model [10, 11, 12]

Fπ(Q2)≈ 1
1+Q2

/
m2

VMD
for Q2 � m2

VMD (1.2)

Therefore at some Q2 there must be a transition from the VMD behavior to the large Q2 scaling
predicted by pQCD. Since the pion is the lightest hadron, the transition is expected to occur at
lower Q2 than heavier hadrons, which makes it relatively easier to probe by both experiments and
Lattice QCD (LQCD). Finally, there is no disconnected diagram on the lattice for the pion form
factor. Thus the calculation is pretty straightforward. Previous LQCD studies on the pion form
factor can be found in [13, 14, 15, 16] and the references therein.

The current results from various experiments are shown in Fig. 1, including the latest results
from Jefferson Lab (JLab) experiments E93-021 [17, 18] and E01-004 [19]. As we can indicate
from the figure, the data points around Q2 ∼ 2GeV2 start to show some hints of deviation from the
VMD fit. This is the energy regime we would like to explore in our study.

Figure 1: Summary of experimental data for the pion electromagnetic form factor. The two points with
open circles are the latest data from the Jefferson Lab (JLab). Shaded regions are expected sensitivities of
future experiments.
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2. Lattice Techniques

In this section we explain the techniques we used in our lattice calculations, namely the sequen-
tial source method (for calculating the quark propagator) and the ratio method (for the correlation
functions). The pion electromagnetic form factor is obtained in LQCD by placing a pion creation
operator (the “source”) at Euclidean time ti with momentum pi, a pion annihilation operator (the
“sink”) at t f with momentum p f , and a current insertion at time t with momentum transfer q, as
shown in Fig. 2. The standard quark propagator calculation provides the two propagator lines that
originate from ti, the remaining propagator from t f is obtained by the sequential source method:
completely specify the quantum numbers and p f at the sink, and contract the propagator from ti to
t f with the annihilation operator to serve as the source vector of a second, sequential propagator
inversion. The advantage of using the sequential source method is that various currents with differ-
ent Q2 can be inserted at time t without additional matrix inversions. The largest Q2 available lies
in Breit frame (~p f =−~pi).

1

Figure 2: The quark propagators used to compute the pion form factor.

To obtain a simple expression on the lattice, we construct the pion form factor using the ratio
method. The pion form factor F(Q2) is defined as

〈
π(~p f )

∣∣Vµ(0)
∣∣π(~pi)

〉
continuum (2.1)

= ZV
〈
π(~p f )

∣∣Vµ(0)
∣∣π(~pi)

〉
= F(Q2)(pi + p f )µ

where Vµ(x) is the chosen vector current. We can extract F(Q2) from some ratio of the three-point
correlation function and the two-point functions. The three-point function can be written as

Γ
AB
πµπ(ti, t, t f ,~pi,~p f ) = a9

∑
~xi,~x f

e−i(~x f−~x)·~p f

×e−i(~x−~xi)·~pi
〈

0
∣∣∣φB(x f )Vµ(x)φ †

A(xi)
∣∣∣0

〉
(2.2)
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where φ ’s are operators with pion quantum numbers; A ∈ (L,S) and B ∈ (L,S) denote either
“local”(L) or “smeared”(S). Inserting complete sets of hadron states and requiring ti � t � t f ,
gives

Γ
AB
πµπ(ti, t, t f ,~pi,~p f )→

〈
0 |φB(x)|π(~p f )

〉
×

〈
π(~p f )

∣∣Vµ(x)
∣∣π(~pi)

〉〈
π(~pi)

∣∣∣φ †
A(x)

∣∣∣0
〉

× a3

4Eπ(~p f )Eπ(~pi)
e−(t f−t)Eπ (~p f )e−(t−ti)Eπ (~pi). (2.3)

Similarly for the two-point correlator,

Γ
AB
ππ(ti, t f ,~p)→ 〈0 |φB(xi)|π(~p)〉

×
〈

π(~p)
∣∣∣φ †

A(xi)
∣∣∣0

〉 a3

2E
e−(t f−ti)E . (2.4)

We can obtain F(Q2) from the following ratio

F(Q2) =
ΓAB

π4π
(ti, t, t f ,~pi,~p f )ΓCL

ππ(ti, t,~p f )
ΓAL

ππ(ti, t,~pi)ΓCB
ππ(ti, t f ,~p f )

×
(

2ZV Eπ(~p f )
Eπ(~pi)+Eπ~p f

)
, (2.5)

where the indices A, B and C can be either L (local) or S (smeared).

3. Simulation Details and Results

We use lattices generated by MILC [20], with volume 203×32 and lattice spacing a = 0.125
fm. The sea quark mass msea and the valence quark mass mval are tuned so that we get the same
lightest pion mass mπ(msea) = mπ(mval) [21]. The pion operators are fixed at time ti = 10 and
t f = 20, and the number of configurations used in this study is 201. We use five different sets of
sink momenta: ~p f = (0,0,0),(1,0,0),(1,1,0),(1,1,1), and (2,0,0).

We present our results in terms of the square of the pion charge radius, obtained by the VMD
fit:

〈r2
π〉=

6
m2

V MD
(3.1)

as shown in Fig. 3. The first point on the left is from the data set with only zero sink momentum
(~p f = (0,0,0)), and for the next point we combined the data from both ~p f = (0,0,0) and ~p f =
(1,0,0), and for the third point we added in ~p f = (1,1,0), and so on.

We can see from Fig. 3 that the error bars of r2
π increases as higher sink momenta are included.

Since the pion charge radius is related to the slope of F(Q2) at low Q2, we derive 〈r2
π〉 from the data

set of zero sink momentum ~p f = (0,0,0) and Q2 < 1GeV2, and check the consistency between the
VMD fit and the data above 1GeV2 to see if there is any deviation from the VMD model.

4



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
7
)
1
4
5

Pion Form Factor at Large Momentum Transfer Pai-hsien Jennifer Hsu

Figure 3: Pion Form Factor VMD fit for ~p f = (0,0,0) to (2,0,0).

The result of this “consistency check” is presented in Fig. 4, where we plot Q2F(Q2) against
Q2. While the quantity Q2F(Q2) should approach a constant as predicted by VMD, we can see
that there are some hints of deviation from the VMD model for points with Q2 > 2GeV2. To
further emphasize this observation, we define ∆Q2F(Q2) = Q2F(Q2)Lattice −Q2F(Q2)V MD, and
plot ∆Q2F(Q2) against Q2 in Fig. 5.

Figure 4: Consistency between data and the VMD fit from low Q2 with zero sink momentum. The three red
lines represent the VMD fit and its error bars, and the triangle points correspond to the experimental data
from JLab.

We also compared this VMD fits from low Q2 with that from the Breit frame (where~p f =−~pi),
for the data points of the Breit frame have relatively small error bars at high Q2. The result is shown
in Fig. 6. The figure implies that the VMD fit from the Breit frame (the purple one) is about 1σ

away from the fit of a single zero sink momentum (the blue one), hence exploring further in the
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Figure 5: ∆Q2F(Q2), as defined in the text.

Figure 6: VMD fits with error bands from both data of low Q2 with zero ~p f , and from data points in the
Breit frame.

Breit frame may be the correct direction for studying the pion form factor at higher momentum
transfer.

4. Summary and Outlook

In this study we have acquired enough lattice data for Q2 < 1GeV2 to extract a reliable pion
charge radius rπ . By comparing the VMD fit from data with low Q2 and high Q2, we’ve started
to see some hints of discrepancy between data points at different momentum transfer, which may
indicate the transition from the VMD model to pQCD, the goal we are seeking for. We also found
that the VMD fit from the Breit frame is about 1σ away from the fit of a single zero sink momentum,
and we infer that we may explore further in the high Q2 regime by studying the data from the Breit
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frame. We are generating four times more data to shrink the error bars in the Breit frame in the
hope of a clearer and stronger evidence of the transition into the perturbative QCD regime.

In the meantime, the JLQCD Collaboration has also reported their calculation of the pion
form factor based on all-to-all propagators. Interested readers may find details in their upcoming
publication [22].
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