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1. Introduction

Since the pion plays a central role in low-energy dynamics, its properties are of great interest.
For the electromagnetic form factorFπ(q2), precise experimental data are available near the zero
momentum transferq2 =0, where the dependence ofFπ(q2) on the quark massm andq2 can be
described by chiral perturbation theory (ChPT) provided thatm is sufficiently small. A detailed
comparison ofFπ(q2) on the lattice with ChPT and experiments therefore provides a good testing
ground for lattice calculations in the chiral regime. An understanding on the applicability of ChPT
to lattice data is also helpful towards a reliable calculation of form factors ofK, D andB mesons.

In this article, we report on our on-going calculation ofFπ(q2) in two-flavor QCD. We employ
the overlap fermions, which have the exact chiral symmetry and hence allowus to apply ChPT
straightforwardly to our chiral extrapolation. The salient feature of this study is thatFπ(q2) is
calculated precisely through all-to-all quark propagators [1] for a meaningful comparison with
ChPT and experiments.

2. Simulation method

We simulate QCD with two flavors of degenerate up and down quarks using theIwasaki gauge
action and the overlap quark action with the standard Wilson Dirac kernel. Toreduce the computa-
tional cost substantially, (near-)zero modes of the kernel are suppressed by introducing two-flavors
of unphysical Wilson fermions and twisted mass ghosts [2], which do not change the continuum
limit. Our numerical simulations are carried out on aN3

s ×Nt =163×32 lattice at a single value of
β =2.30. The lattice spacing isa=0.1184(16) fm, if r0 =0.49 fm is used as input. We take four
quark massesm=0.015,0.025,0.035 and 0.050, which cover a range of[ms/6,ms/2]. Our current
statistics are 50 configurations separated by 100 HMC trajectories at eachm. So far, we have simu-
lated only the trivial topological sector, and effects of the fixed global topology by the extra Wilson
fermions are to be studied [3]. We refer to Ref.[4] for further details on our production run.

3. Measurement through all-to-all propagators

We construct all-to-all propagators of overlap quarks along the strategy proposed in Ref. [1].
Low-lying modes of the overlap operatorD are determined by the implicitly restarted Lanczos
algorithm and their contribution to the all-to-all propagator is calculated exactlyas

(D−1)low =
Nep

∑
k=1

1

λ (k)
u(k)u(k)†, (3.1)

where(λ (k),u(k)) representsk-th eigenmode and the number of eigenmodesNep is set to 100 in this
study. We note that the overlap operator is normal and the left and right eigenvectors coincide with
each other.

The contribution of higher modes is estimated stochastically by the noise method withthe
dilution technique [1]. OneZ2 noise vector is generated for each configuration, and isdiluted into
Nd = 3×4×Nt/2 vectors with support on a single value for color and spinor indices and at two
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time-slices. The high mode contribution

(D−1)high =
Nd

∑
d=1

x(d) η(d)† (3.2)

can be obtained by solving the linear equation for each diluted source

Dx(d) = (1−Plow)η(d) (d = 1, ...,Nd), (3.3)

whered is the index for the dilution andPlow is the projector to the eigenspace spanned by the low
modes. We employ the four dimensional relaxed CG for our overlap solver [5].

In summary, all-to-all quark propagators can be expressed as the matrix

D−1 =
Nvec

∑
k=1

v(k) w(k)† (Nvec = Nep+Nd) (3.4)

constructed from the following two set of vectorsv andw:

v(k) =

{

u(1)

λ (1)
, . . . ,

u(Nep)

λ (Nep)
,x(1), . . . ,x(Nd)

}

, w(k) =
{

u(1), . . . ,u(Nep),η(1), . . . ,η(Nd)
}

. (3.5)

Then, two-point functions with the source (sink) operator at time-slicet(′) and three-point
functions with the vector current att ′′ can be expressed as

CΓΓ′,φφ ′(t ′− t;p) =
Nvec

∑
k,l=1

O
(k,l)
Γ′,φ ′(t ′,p)O

(l,k)
Γ,φ (t,−p), (3.6)

CΓγµ Γ′,φφ ′(t ′′− t, t ′− t ′′;p,p′) =
Nvec

∑
k,l,m=1

O
(m,l)
Γ′,φ ′ (t ′,p′)O

(l,k)
γµ ,φl

(t ′′,p−p′)O
(k,m)
Γ,φ (t,−p), (3.7)

where the momentum and smearing function for the initial (final) meson are denoted byp(′) and
φ (′), and

O
(k,l)
Γ,φ (t,p) = ∑

x,r
φ(r)w(x+ r, t)(k)†Γv(x, t)(l) e−ipx (3.8)

is the meson operator with the Dirac spinor structureΓ constructed from thev andw vectors. The
smearing function for the local operator isφl(r)=δr,0.

We prepare thev andw vectors on the IBM BlueGene/L at KEK. The computational cost of
the determination of low modes is∼ 0.6 TFLOPS·hours per configuration. Solving Eq. (3.3) is the
most time-consuming part in our measurement, since it requiresNt/2 times more inversions than
the conventional method. We observe that, however, the low-mode preconditioning of our overlap
solver leads to about a factor of 8 speedup and its cost is reduced to∼ 1.7 TFLOPS·hours/conf
for a given valence quark massm. The calculation of the meson operatorO

(k,l)
Γ,φ (t,p) needs much

less CPU time than the above two steps: it is about 0.2 GFLOPS·hours/conf for a single choice
of (m,p,Γ,φ ). The calculation of correlation functions are even less costly. These calculations are
carried out on the Hitachi SR11000 and workstations at KEK.

3



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
7
)
1
4
8

Pion form factor from all-to-all propagators of overlap quarks T. Kaneko

The key issue in the all-to-all calculation
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Figure 1: Jackknife data of three-point function
Cγ5γ4γ5,φsφs(Nt/4,Nt/4;p,0) with |p| =

√
2 before

(top panel) and after averaging over source opera-
tor locations and momentum configurations (bottom
panel). Data are normalized by the statistical aver-
age.

is the re-usability of the all-to-all propagators:
namely, we do not have to repeat the time-con-
suming Lanczos step and overlap solver to con-
struct the meson operatorO

(k,l)
Γ,φ (t,p) for differ-

ent choices of (p,Γ,φ ). This is a great advantage
in studies of form factors, which require an ac-
curate estimate of relevant correlation functions
with various choices of the momentum configu-
ration (p,p′). In this study, we test two smear-
ing functionsφl(r) andφs(r)=exp[−0.4|r|], and
take 33 choices for the meson momentump with
|p| ≤ 2. Note that the lattice momentum is in
units of 2π/L in this article. This setup enables
us to simulate 11 different values ofq2, which
cover a range of−1.65 [GeV2] . q2.

It is also advantageous to average the correlation functions over the momentum configura-
tions, which give the same value ofq2, as well as over the source locations(x, t) with temporal
separations, namely∆t = t ′′−t and∆t ′ = t ′−t ′′, kept fixed. This averaging reduces the statistical
fluctuation remarkably as shown in Fig. 1.

4. Pion form factor and charge radius

We calculate effective value of the pion form factor from the ratio

Fπ,φ (∆t,∆t ′;q2) =
2Mπ

Eπ(|p|)+Eπ(|p′|)
Rφ (∆t,∆t ′; |p|, |p′|,q2)

Rφ (∆t,∆t ′;0,0,0)
, (4.1)

Rφ (∆t,∆t ′; |p|, |p′|,q2) =
Cγ5γ4γ5,φφ (∆t,∆t ′;p,p′)

Cγ5γ5,φφl (∆t;p)Cγ5γ5,φlφ (∆t ′;p′)
, (4.2)
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Figure 2: Effective value of pion form factorFπ,φ (∆t,∆t ′;q2) at m=0.025. In the left panels, the data are
plotted as a function of∆t ′ with ∆t fixed, whereas the right panels show∆t dependence with∆t +∆t ′ fixed.
Open (filled) symbols show data withφ =φl (φs).
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Figure 3: Pion form factor atm=0.015 (left panel) and 0.050 (right panel) as a function ofq2. The Solid
line shows the parametrization of the measured pole plus thequadratic correction. The dashed line is the
expectation from VMD.

whereφ = φl or φs, and the pion massMπ and energyEπ are determined by single-cosh fits to
Cγ5γ5,φsφs . We note that the ratioRφ is calculated from correlation functions averaged over the
momentum configurations and source locations.

An example ofFπ,φ (∆t,∆t ′;q2) is plotted in Fig. 2. The pion form factorFπ(q2) is determined
from a constant fit toFπ,φs(∆t,∆t ′;q2) in a range of(∆t,∆t ′), whereFπ,φs shows a reasonable plateau
and good agreement with data withφ =φl. As shown in Fig. 3, we obtain an accurate estimate of
Fπ(q2) except at our smallestq2, whereCγ5γ4γ5,φφ suffers from the most serious damping factor
e−Eπ (|p|)∆te−Eπ (|p′|)∆t ′ with (|p|, |p′|)=(2,1).

In the same figure, we observe that theq2 dependence of our data is close to the expectation
from the vector meson dominance (VMD) hypothesisFπ(q2)∼1/(1− q2/M2

ρ) particularly near
q2 =0. Theq2 dependence is therefore parametrized by the following form of the vectormeson
pole with a polynomial (up to cubic order)

Fπ(q2) =
1

1−q2/M2
ρ

+ c1 q2 + c2 q4 + c3 q6, (4.3)

or an additional pole correction

Fπ(q2) =
c

1−q2/M2
ρ

+
c′

1−q2/M2
pole

(c+ c′=1). (4.4)

While the simplest form Eq. (4.3) with the linear correction (c2,c3=0) gives a slightly high value
of χ2/dof & 2 at heavier quark massesm≥0.035, other fitting forms describe our data reasonably
well at all m.

In Fig. 4, we compare the charge radius

〈r2〉 = 6dFπ(q2)/dq2
∣

∣

q2=0 (4.5)

obtained from different fitting forms and range for the parametrization of the q2 dependence.
Our result is quite stable against variation of these fitting setup. In the following, we employ
Eq. (4.3) with the quadratic correction, since it gives the least value ofχ2/dof with reasonably
well-determined fitting parameters. We include the leading finite volume correction[6] into the
result for〈r2〉.

5



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
7
)
1
4
8

Pion form factor from all-to-all propagators of overlap quarks T. Kaneko

Figure 5 shows our chiral extrapolation
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Figure 4: Charge radius obtained atm = 0.025 from
various choices of fitting form (left panel) and lower
cut for fit range in parametrization ofq2 dependence of
Fπ(q2) (right panel).

of 〈r2〉. In this preliminary report, we test the
NLO ChPT formula [7]

〈r2〉 = c0 +
1

(4π f0)2 log
[

M2
π
]

+ c1 M2
π , (4.6)

where a higher order analytic correction is in-
cluded to account for the quark mass depen-
dence of the contribution of the vector reso-
nance 6/M2

ρ . With two values off0 from our
studies inp- andε-regimes [8], Eq. (4.6) gives
a reasonable value ofχ2/dof∼1.2 even with-
out the higher order term. It is however likely
that this consistency with NLO ChPT is acci-
dental, since, as seen Fig. 5, the quark mass dependence of our data is mainly caused by that of the
resonance contribution.

This chiral extrapolation leads to our preliminary result

〈r2〉 = 0.388(9)stat(12)sys fm2, (4.7)

where the systematic error is estimated by changing the parametrization form oftheq2 dependence
of Fπ(q2) and the choice off0, and by removing the higher order correction in Eq. (4.6). This result
is significantly smaller than the experimental value 0.452(11) fm [9]. We needfurther investigations
on systematic uncertainties: namely the lattice scale has to be fixed from an experimental input and
we need study finite volume effects including those due to the fixed topology [3]. The consistency
with ChPT may also be tested within the framework including resonance contributions [10] as in
an analysis of experimental data in Ref [11].

5. Conclusions

In this article, we report on our calculation ofFπ(q2) in two-flavor QCD through all-to-all

0.00 0.05 0.10 0.15 0.20 0.25

Mπ
2
 [GeV

2
]

0.20

0.25

0.30

0.35

0.40

0.45

0.50

<
r2 >

 [f
m

2 ]

Mρ pole + quad

experiment (PDG)
VMD

0.2 0.3 0.4 0.5 0.6 0.7 0.8

<r
2
> [fm

2
]

5

10 this work:  Nf=2,  overlap

JLQCD:  Nf=2, clover

QCDSF/UKQCD:  Nf=2, clover

LHP:  Nf=3, KS+DWF

van der Heide et al.:  Nf=0, clover

BGR:  Nf=0, chirally improved

Figure 5: Left panel: chiral extrapolation of charge radius〈r2〉. The experimental value in Ref.[9] and
〈r2〉=6/M2

ρ from VMD are alto plotted. Right panel: comparison of〈r2〉 from recent studies.
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propagators of the overlap fermions. Our preliminary result for〈r2〉 is a slightly smaller than
experiment as in most of previous studies [12, 13, 14, 15, 16, 17] shown in Fig. 5. To understand
the source of this discrepancy, we are completing our measurement ofFπ(q2) with our full statistics
(10,000 trajectories at eachm) for a more stringent comparison with experiment and ChPT.

We also observe that the all-to-all propagators provide a very precise determination of meson
correlators. Our studies are already underway for the pion scalar form factor,K → π form factors
and flavor singlet mesons using meson operators Eq. (3.8) saved to disk.

Numerical simulations are performed on Hitachi SR11000 and IBM System Blue Gene Solu-
tion at High Energy Accelerator Research Organization (KEK) under a support of its Large Scale
Simulation Program (No. 07-16). This work is supported in part by the Grant-in-Aid of the Ministry
of Education (No. 17740171, 18034011, 18340075, 18740167, 18840045 and 19740160).
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