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We develop a methodology that enables us to extract accurately the electromagnetic ∆ form factors
and their momentum dependence. We test our approach in the quenched approximation as a
preparation for a study using dynamical fermions. Our calculation of the four form factors covers
pion masses between about 410 MeV and 560 MeV on lattices with a size of 2.9 fm and a lattice
spacing∼ 0.09 fm. From the form factors we are able to obtain estimates of the magnetic moment
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Our non-zero result for the electric quadrupole form factor signals a deformation of the ∆, pointing
to an oblate charge distribution.
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1. Introduction

Electromagnetic form factors probe the structure of hadrons, yielding information on their
size, shape and magnetization. While the nucleon form factors and the N → ∆ transition form
factors have been studied quite thoroughly both experimentally and on the lattice [1], much less
has been done for the ∆ form factors. Experiments are notoriously difficult due to the short mean
life time of the ∆ of only about 6×10−24s. Nevertheless the magnetic moments of the ∆+ [2] and
∆++ [3, 4] have been measured. On the lattice the electromagnetic form factors of the ∆ baryon
have been evaluated at one value of the momentum transfer in a pioneer quenched study in the early
nineties [5]. The main advantage of the fixed-sink approach that we adopt here, is that we are able to
calculate the form factors for all values and directions of the momentum transfer~q simultaneously,
allowing for an increased statistical precision. Furthermore, we construct optimized sources that
isolate the suppressed form factors enabling us, for the first time, to extract the electric quadrupole
accurately. Other improvements comprise reduced systematic errors due to finer lattice spacings,
larger volumes and smaller pion masses.

2. Lattice techniques

We are working in Euclidean space-time throughout the whole paper. We use Wilson fermions
and the standard Wilson plaquette gauge-action. At all the pion masses considered in this work the
∆ is a stable particle.

2.1 Electromagnetic form factors of the ∆ baryon

The matrix element of the electromagnetic current, Vµ , between two ∆-states can be decom-
posed in terms of four independent covariant vertex function coefficients, a1(q2), a2(q2), c1(q2)
and c2(q2), which depend only on the momentum transfer squared q2 = (p f − pi)2 [6]:

〈∆(p f ,s f )|V µ |∆(pi,si)〉 =

√
m2

∆

E∆(~p f )E∆(~pi)
ūσ (p f ,s f )Oσ µτ uτ(pi,si) (2.1)

Oσ µτ = −δστ

[
a1γ

µ − i
a2

2m∆

Pµ

]
+

qσ qτ

4m2
∆

[
c1γ

µ − i
c2

2m∆

Pµ

]
.

E∆ and m∆ denote the energy and the mass of the particle, pi (p f ) and si (s f ) are the initial (final)
four-momentum and spin-projection, while P = p f + pi. Every vector-component of the Rarita-
Schwinger spinor uσ (p,s) satisfies the free Dirac equation. Furthermore, the following auxiliary
conditions are obeyed

γσ uσ (p,s) = 0, pσ uσ (p,s) = 0 . (2.2)

The vertex function coefficients are linked to the phenomenologically more interesting multipole
form factors GE0, GE2, GM1 and GM3 by a linear relation [6]. The dominant form factors are the
electric charge, GE0, and the magnetic dipole, GM1, form factors.
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2.2 Interpolating fields

We use an interpolating field that has the quantum numbers of the ∆+ baryon

χ
∆+

σα(x) =
1√
3

ε
abc
[
2
(

ua>(x)Cγσ db(x)
)

uc
α(x)+

(
ua>(x)Cγσ ub(x)

)
dc

α(x)
]
, (2.3)

where C is the charge conjugation matrix. To facilitate ground-state dominance we employ a co-
variant Gaussian smearing [7] on the quark-fields entering Eq. (2.3)

qβ (t,~x) = ∑
~y

[1+αH(~x,~y;U)]n qβ (t,~y) (2.4)

H(~x,~y;U) =
3

∑
µ=1

(
Uµ(~x, t)δ~x,~y−µ̂ +U†

µ(~x− µ̂, t)δ~x,~y+µ̂

)
(2.5)

Here q is the local quark field (i.e. either u or d), q is the smeared quark field and Uµ is the SU(3)-
gauge field. For the lattice spacing and pion masses considered in this work, the values α = 4.0
and n = 50 ensure ground state dominance with the shortest time evolution that could be achieved.

2.3 Correlation functions

We specialize to a kinematical setup where the final ∆-state is at rest (~p f =~0) and measure the
two-point and three-point functions

Gστ(Γν ,~p, t f − ti) = ∑
~x f

e−i~x f ·~p Γ
ν

α ′α 〈χσα(t f ,~x f )χ̄τα ′(ti,~0)〉 (2.6)

G µ

σ τ(Γν ,~q, t) = ∑
~x,~x f

ei~x·~q
Γ

ν

α ′α 〈χσα(t f ,~x f )V µ(t,~x)χ̄τα ′(ti,~0)〉 , (2.7)

where Vµ is the symmetrized, conserved lattice electromagnetic current. We work with a repre-
sentation of the Clifford-algebra in which γ4 is diagonal. In this representation our choices for the
Γ-matrices are

Γ
k =

1
2

(
σ (k) 0
0 0

)
and Γ

4 =
1
2

(
1 0
0 0

)
, (2.8)

with k = 1, . . . ,3 and σ (k) being the Pauli matrices. The ratio

R µ

σ τ(Γ,~q, t) =
G µ

σ τ(Γ,~q, t)
Gkk(Γ4,~0, t f )

√
Gkk(Γ4,~pi, t f − t)Gkk(Γ4,~0, t)Gkk(Γ4,~0, t f )

Gkk(Γ4,~0, t f − t)Gkk(Γ4,~pi, t)Gkk(Γ4,~pi, t f )
, (2.9)

with implicit summations over the indices k with k = 1, . . . ,3, becomes time independent for large
Euclidean time separations t f − t and t− ti:

R µ

σ τ(Γ,~q, t)→ Π
µ

σ τ(Γ,~q) =

√
3
2

[
2E∆(~q)

m∆

+
2E2

∆(~q)

m2
∆

+
E3

∆(~q)

m3
∆

+
E4

∆(~q)

m4
∆

]− 1
2

tr
[
ΓΛσσ ′(p f )Oσ ′µτ ′

Λτ ′τ(pi)
]

. (2.10)

3



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
7
)
1
4
9

Electromagnetic form factors of the ∆ baryon T. Korzec

The traces act in spinor-space and the Euclidean Schwinger-Rarita spin sum is given by

Λστ(p) =−
−i/p+m∆

2m∆

[
δστ −

γσ γτ

3
+

2pσ pτ

3m2
∆

− i
pσ γτ − pτγσ

3m∆

]
. (2.11)

Since we are evaluating the correlator of Eq. (2.7) using sequential inversions through the
sink [8], a separate set of inversions is necessary for every choice of vector and Dirac-indices. The
total of 256 combinations is beyond our computational resources, and hence we concentrate on a
few carefully chosen combinations given below

Π
(1)
µ (~q) =

3

∑
j,k,l=1

ε jklΠ
µ

j k(Γ
4,~q) (2.12)

Π
(2)
µ (~q) =

3

∑
k=1

Π
µ

k k(Γ
4,~q) (2.13)

Π
(3)
µ (~q) =

3

∑
j,k,l=1

ε jklΠ
µ

j k(Γ
j,~q) . (2.14)

From these all the multipole form factors can be optimally extracted. For instance (2.12) is propor-
tional to GM1, while (2.14) isolates GE2 for µ = 4.

2.4 Data analysis

For a given value of q2 the combinations given in Eqs. (2.12) to (2.14) are evaluated for all
different directions of ~q resulting in the same q2, as well as for all four directions µ of the current.
This leads to an over-constrained linear system of equations, which is then solved in the least-
squares sense yielding estimates of GE0, GE2, GM1 and GM3. This estimation is embedded into
a jackknife binning procedure, thus providing statistical errors for the form factors that take all
correlation and autocorrelation effects into account.

3. Results

3.1 Simulation parameters

The calculation has been performed on a lattice of volume L3×T = 323×64 in the quenched
approximation. The lattice spacing has been estimated using the nucleon mass in the chiral limit [1]
to be a = 0.092(3), so the spatial extent of the lattice is ∼ 2.9 fm. We work with two degener-
ate Wilson valence quarks. Isospin symmetry relates results obtained for the ∆+ to those for the
∆++, ∆0 and ∆− since they differ only by a charge-factor. The pion and ∆ masses corresponding
to the three values of the hopping parameter, κ , considered here are summarized in Table 1. We
use 200 well separated gauge configurations for the calculation. Contributions from disconnected
diagrams are neglected. The numbers and figures below are obtained from the connected contribu-
tions to the full electromagnetic current. They also can be interpreted as the iso-vector form factors
with the iso-vector current V I

µ = ūγµu− d̄γµd.
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3.2 Electric charge form factor GE0

Our results for GE0 are displayed in the left panel of Fig. 1. The momentum dependence of
our data is described very well by the dipole ansatz

GE0(q2) =
1

(1+ cE0 q2)2 . (3.1)

Non-relativistically the slope at q2 = 0 is related to the electric charge radius via〈
r2〉=−6

d
dq2 GE0(q2)

∣∣∣∣
q2=0

, (3.2)

for which the results are collected in Table 1. An extrapolation of the form factor to the physical
pion mass, linear in m2

π , is used to obtain the last row of the table. One could consider using
chiral perturbation theory for the extrapolations [9]. This will be done when we have results using
dynamical fermions.

After a chiral extrapolation, linear in m2
π , the authors of ref. [5] obtained 0.63(7) fm, which is

compatible with our value of 0.691(6) fm.

3.3 Magnetic dipole form factor GM1

Also GM1(q2) can be fitted to a dipole ansatz

GM1(q2) =
aM1(0)

(1+ cM1 q2)2 . (3.3)

From the fit parameter aM1 the magnetic moment µ∆+ = GM1(0)
(

e
2m∆

)
of the ∆ can be determined.

It is given in Table 1. Fits and data are shown in Fig. 1.
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Figure 1: The two dominant form factors for the three pion masses as well as the result of a linear chiral
extrapolation to the physical pion mass. The left panel shows the electric charge form factor, GE0, and the
right panel shows the magnetic dipole form factor, GM1. The lines are fits to the dipole forms Eqs. (3.1)
and (3.3). The band at q2 = 0 indicates the experimentally measured value as quoted by the particle data
group.
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The magnetic moment of the ∆++ has been measured in several experiments. However not
all experimental values are in agreement with each other, so the particle data group quotes a rather
broad band of 3.7µN to 7.5µN [4]. The most recent experiment [3] quotes µ∆++ = 6.14(51)µN .
Our estimate of µ∆++ = 2µ∆+ = 4.64(32)µN lies in the middle of the error band given by PDG and
below the result of [3]. An experiment [2] that measures the magnetic moment of the ∆+ arrives at
µ∆+ = (2.7±1±1.5±3)µN . Also recent lattice calculations yield results on the magnetic dipole
moment. The value of 1.6(3)µN for the ∆+, read off from fig. 6 of Ref. [10] at a pion mass of
around 300 MeV lies slightly below our value of 2.32(16)µN .

3.4 Electric quadrupole form factor GE2

This is the first accurate evaluation of the quadrupole form factor, GE2, within lattice QCD.
The intrinsic quadrupole moment Q = m−2

∆
GE2(0), non-relativistically, is given by [5]

Q =
∫

d3r ψ̄(r)
(
3z2− r2)

ψ(r) , (3.4)

where ψ is the wave function of the ∆. A negative value, as that shown in Fig. 2, corresponds to an
oblate deformation of the ∆.

The value GE2(0) = −0.4(14) obtained in reference [5] is compatible with ours, but comes
with a much larger statistical error.

3.5 Magnetic octupole form factor GM3

Our signal for GM3 is not very strong, as can be seen in Fig. 2. This form factor has a small
negative value, albeit with large statistical errors that, at present, do not exclude a zero value. To
next to leading order of a chiral expansion a value of zero is expected [9].
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Figure 2: The electric quadrupole form factor (left panel) and the magnetic octupole form factor (right
panel). The notation is the same as in Fig.1.
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κ mπ [MeV ] m∆ 〈r2〉 1
2 GM1(0) GE2(0)

0.1554 563(4) 1.470(15) 0.614(2) 3.05(7) −0.6(3)
0.1558 490(4) 1.425(16) 0.632(2) 3.05(8) −0.7(4)
0.1562 411(4) 1.382(15) 0.650(3) 3.05(10) −0.7(4)

135 0.691(6) 3.04(21)

Table 1: Estimated values of the ∆ mass, the charge radius, GM1(0) and GE2(0) for the pion masses consid-
ered. The last row contains our results from data extrapolated to the physical value of the pion mass.

4. Conclusions and outlook

Our results on the electromagnetic form factors of the ∆ baryon and their momentum depen-
dence confirm the up to now phenomenological description, e.g. the q2-dependence of GE0 and
GM1 are well described by a dipole ansatz. A particularly interesting result of our study is the
non-vanishing, negative value of the electric quadrupole form factor, which is associated with an
oblate ∆.

While the statistical errors in our calculation are under control, there are several sources of
systematic errors that we would like to address. The results presented here were obtained in the
quenched approximation. A study with dynamical fermions is currently in progress. It is not clear
how strongly the neglect of disconnected contributions affects our final results. This is a problem
we share with most other calculations of electromagnetic form factors. Only recently, with new
methods and faster machines, we are beginning to address the calculation of the disconnected
contributions in a statistically controlled manner.

While the finite volume effects are expected to be negligible on our rather big lattice, cutoff
effects may be significant, especially towards higher momentum transfers.
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