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Pion and ρ-meson form factors using four-point functions in NF =2 QCD Giannis Koutsou

1. Introduction

The standard approach used in the evaluation of form factors in lattice QCDis to compute a
three-point function. More detailed information on hadron structure can be extracted from four-
point correlators. The quark distribution inside the hadron and hadron deformation are just two
such important aspects that can be studied using these correlators. The equal time density-density
correlator provides a gauge invariant definition of the hadron "wave function" but originally could
only be evaluated approximately [1]. This is because four-point functions are harder to compute
than two- and three-point functions, requiring the all to all propagator. The usual way to estimate
the all to all propagator is by employing stochastic techniques [2]. In Ref [3, 4] we usedZ(2) noise
combined with dilution to compute the all to all propagators and obtained results both for mesons
and baryons [3, 4]. In this work we generalize the so called one-end trick [5], originally devised as a
method to calculate two-point functions, to evaluate four-point functions. We demonstrate that this
approach yields more accurate results by evaluating the density-density correlator for the pion and
ρ-meson and comparing the results to those obtained using standard stochastictechniques [3, 4].
Furthermore, we extract the pion form factor obtaining results that have comparable errors as those
obtained when one uses the one-end trick to compute the pion form factor using the three-point
function [6]. An advantage of using four-point functions is that we onlyneed one set of stochastic
propagators to extract the form factor forany momentum transfer unlike using three-point functions
where a new set is needed for every momentum. We also show how to generalize our method to
other mesons and give preliminary results onG1, one of the three form factors of theρ−meson.

2. Four-point functions

Hadron four-point functions are given by

G jσ
h (~x2, t1, t2) =

∫

d3x1d3x〈h(~x, t)| j
q f
σ (~x2 +~x1, t2) j

q f ′

σ (~x1, t1) |h(~x0, t0)〉 (2.1)

where j
q f
σ is the normal ordered electromagnetic operator : ¯q f γσ q f : with f being a flavor index,

while |h〉 denotes any hadronic state. The two integrations ensure zero momentum of the hadronic
state; integrating over~x1 sets the momentum of the source equal to that of the sink and integrating
over~x sets both to zero. Thus to compute the four-point function on the lattice, the allto all
propagator from all sites~x1 to~x is needed.

It is well known that an estimate for the all to all propagator can be obtained using stochastic
techniques [2]. In brief, one inverts for a set ofNr noise vectors obeying

〈

ξ a
µ(x)ξ b†

ν (y)
〉

r
= δ (x−

y)δa,bδµ,ν and
〈

ξ a
µ(x)

〉

r
= 0 and estimates the all to all propagator by averaging the product of the

solution vectors with the noise vectors over the stochastic ensemble. Namely thequark propagator
Gb,a

ν,µ(x,y) →
〈

φ b
ν (x)ξ a†

µ (y)
〉

r
, whereξ is a noise vector andφ the solution vector. One, therefore,

replaces every occurrence ofG with the product betweenξ andφ thereby obtaining the stochastic
estimate for the four-point function. More details and results for hadron wave functions and the
pion form factor obtained using this method can be found in Refs. [3, 4], where it is shown that
with sufficient number of noise vectors and dilution one can obtain a reasonable signal [7]. We
shall refer to this approach as Method I. Here we show how one can reduce stochastic noise by
implementing the one-end trick [5] for the computation of meson four-point functions. We shall
refer to this new approach as Method II.

2



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
7
)
1
5
0

Pion and ρ-meson form factors using four-point functions in NF =2 QCD Giannis Koutsou

3. Description of Method II

The one-end trick was originally devised for the precise calculation of piontwo-point func-
tions. In its original form, one combines appropriately solution vectors so that an automatic sum-
mation over the source coordinate arises. Thus the number of stochastic inversions needed is re-
duced to a few inversions, thereby suppressing stochastic noise. Moreexplicitly, expanding the dot
product between two solution vectors yields the pion two-point correlator summed over the source
coordinate:

∑
~x

〈

φ†a
µ (~x, t)φ a

µ(~x, t)
〉

r
= ∑

~x,~y0,~x0

〈

[

Gab
µν(~x, t;~x0, t0)ξ b

ν (~x0, t0)
]†

Gab′
µν ′(~x, t;~x′0, t0)ξ b′

ν ′ (~y0, t0)

〉

r
, (3.1)

where we assume that the noise vectors are localized on a certain time slicet0. Taking the average
of the noise vectors over the stochastic ensemble yieldsδ−functions by definition. Thus we obtain

∑
~x,~y0,~x0

[

Gab
µν(~x, t;~x0, t0)

]†
Gab′

µν ′(~x, t;~y0, t0)δaa′δνν ′δ (~x0−~y0) = ∑
~x,~x0

Tr
[

|G(~x, t;~x0, t0)|
2
]

. (3.2)

In the case of the pion Eq. (3.2) arises automatically since one combines the backward going prop-
agator with theγ5 pairs that appear in the pion interpolating operator. For a general interpolating
field, say ¯qiΓq j, whereΓ is any product ofγ-matrices, the noise vectors must be diluted in spin
i.e. ξ a

µ(~x0, t0)r = ξ a(~x0, t0)δrµ , r = 1, ...,4. This imposes that the number of noise vectors is in
multiplets of four. In this case the solution vectors giveφ a

µ(~x, t; t0)r = ∑~x0
Gab

µr(~x, t;~x0, t0)ξ b(~x0, t0),
where thet0 argument appearing inφ is to remind us that the noise vector is localized on the time
slicet0. The combination given by

∑
r,~x

φ a
µ(~x, t; t0)ν(Γγ5)νrφ ∗a

κ (~x, t; t0)r(γ5Γ̄)κµ , (3.3)

yields the two-point function of the meson summed over both sink and source coordinates. The
downside of this method is that, due to the automatic summation over both the source and sink
spatial coordinates, one cannot compute two-point functions for arbitrary momenta using a given
set of noise vectors. To utilize the one-end trick and extract the two-pointcorrelator at finite mo-
mentum one must multiply the noise vectors with an appropriate phase prior to the inversion. Thus
one needsNr inversions for every momentum vector.

The application of this method to four-point functions is appealing since by definition (see
Eq. (2.1)) one is interested in the case where the initial and final states are at rest. We show here
how the one-end trick can be implemented for the case of mesons. The four-point function that we
consider is shown schematically in Fig. 1. At the propagator level we have

G jσ
Γ (~x2; t0, t1, t2, t) = ∑

~x1,~x,~x0

〈χΓ(~x, t)| jσ (~x2 +~x1, t2) jσ (~x1, t1) |χΓ(~x0, t,0)〉 (3.4)

= ∑
~x1,~x,~x0

Tr
[

γ5γσ G(~x1, t1;~x0, t0)Γ̄γ5G†(~x2 +~x1, t2;~x0, t0)γ5γσ G(~x2 +~x1, t2;~x, t)Γγ5G†(~x1, t1;~x, t)
]

where Γ̄ = γ0Γ†γ0 and χΓ(x) is the interpolating field of the meson that takes the general form
q̄i(x)Γq j(x) for i 6= j. Here we explicitly add a sum over the source coordinate~x0 and we fix the
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β = 5.6,a−1 = 2.56(10) GeV

# Confs. κ amπ mπ/mρ

243×40 [8]

185 0.1575 0.270(3) 0.69
150 0.1580 0.199(3) 0.56

243×32 [9]

200 0.15825 0.150(3) 0.45

Table 1: The simulation parameters used in
our computations.

time slice of the source,t0, and the sink,t. The time
slices,t1 andt2, where the currents are inserted, on the
other hand, are free to take any value betweent0 and
t. Thus one needs two sets of stochastic inversions,
one set with the noise vectors localized on the time
slice, t0 and one on the time slice,t. One then finds
an appropriate combination of solution vectors such
that the summation over source and sink coordinates
is carried out automatically. The combination:

∑
~x1

Tr
[

γ5γσ S(Γ̄;~x1, t1;~x2 +~x1, t2; t0)γ5γσ S(Γ;~x2 +~x1, t2;~x1, t1; t)
]

(3.5)

where Sab
µν(Γ;~x2 +~x1, t2;~x1, t1; t) = ∑r φ a

µ(~x2 +~x1, t2; t)r(Γγ5)rκφ ∗b
ν (~x1, t1; t)κ achieves this.

(~x0, t0)

jσ (~x1, t1)

jσ (~x2+~x1, t2)

(~x, t)

Figure 1: The four-point function for
mesons.

Throughout this work we use two degenerate flavors
of dynamical Wilson quarks [8, 9]. In all computa-
tions we employ Gaussian smearing combined with
hypercubic (HYP) smearing of the gauge links that
enter the Gaussian smearing function. The parame-
ters of the Gaussian smearing are adjusted to ensure
minimal time evolution for filtering the meson ground
state. The parameters of our calculation are summa-
rized in Table 1.

4. Meson wave functions

The ρ-meson charge distribution is obtained using the equal time density-density correlator
given by

G j0
ρ (~x1, t1) =

∫

d3x2d3x〈ρ(~x, t)| ju
0(~x2 +~x1, t1) jd

0(~x2, t1) |ρ(~x0, t0)〉 . (4.1)

We test the new technique by comparing results forG j0
ρ (~x1, t1) using Methods I and II. In the large

t1 and t − t1 limit when theρ state dominates,G j0(~x1, t1), normalized over the spatial volume,
becomes time independent and it is denoted byCρ(~x1). In the non - relativistic limit, this four-
point function reduces to the wave function squared. The ingredients needed in Method I are the
point to all propagator from the source and two all to all propagators at timeslicest1 andt, both of
which are kept fixed. For this computation we use six sets of noise vectors diluted for each spin,
color and even-odd sites i.e. we need 24×6 = 144 inversions to obtain each stochastic propagator.
This means a total of 144×2+12= 300 inversions are required for each gauge configuration [4].
For Method II, on the other hand, we used eight sets of spin diluted noise vectors at the source
and sink thus a total of 64 inversions for each configuration. In Fig. 2 weshow a comparison
between the results obtained using Method I and II. What is plotted is the projection of the density-
density correlator,Cρ(~x1), along the spin axis taken to be the z-axis and perpendicular to it. The
interpolating field used for theρ-meson is ¯uγ3d. As can be seen the statistical errors obtained when
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Figure 2: Projections of the ρ-meson
density-density correlator along the spin axis
and perpendicular to it. Upper for Method I
and lower for Method II atκ = 0.1580.

using Method II are almost four times smaller despite
the fact that we use 144/32= 4.5 less number of noise
vectors to estimate the all to all propagator. Therefore
the improvement gained using the one-end trick is re-
ally significant, reducing computational time by two
orders of magnitude. The results obtained in Method
II clearly reveal an asymmetry in the charge distribu-
tion of theρ-meson, which in Method I was hard to
see.
Having demonstrated the effectiveness of Method II
we use it, in what follows, to study deformation in the
ρ-meson as a function of the quark mass and to ex-
tract the pion andρ-meson form factors. In Fig. 3 we
show contour plots of the density-density correlator of
theρ-meson,Cρ(r), projected onto they-z plane. As
can be seen, for all three pion masses, we obtain an
ellipse that is elongated along the spin axis, showing a
clear deformation from spherical symmetry. The cor-
responding contour plots for the pion show no devia-
tion from the circle as expected.

κ = 0.15825
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-0.8 -0.4 0 0.4 0.8 1.2
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0

-0.4

-0.8
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Figure 3: Contour plots of the charge distribution of theρ-meson projected onto they-z plane for
all threeκ values studied. The dashed circles are to guide the eye.

5. Pion and ρ-meson form factors

Form factors can be accurately extracted using four-point functions by taking the Fourier trans-
form of G jσ

h (~x, t1, t2) and allowing large time separations between the current insertions,t2 − t1.
Therefore the extraction of form factors requires larger temporal extension than the equal time
density-density correlators. Methods to suppress excited state contributions are therefore of crucial
importance here. Gaussian smearing combined with HYP smearing achieves ground state domi-
nance as early as three time slices. Taking the Fourier transform of the pionfour-point correlator
we obtain

G j0
γ5(~p; t1, t2)

t2−t1≫1
−−−−−−−−−→
t1−t0≫1, t−t2≫1

∣

∣

〈

χγ5

∣

∣ π(0)〉
∣

∣

2 |〈π(0)| j0 |π(~p)〉|2

8m2
πE(~p)

e−E(~p)(t2−t1)e−mπ (t−(t2−t1)−t0)

5
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=
∣

∣

〈

χγ5

∣

∣π(0)
〉∣

∣

2

∣

∣(E(~p)+mπ)Fπ(Q2)
∣

∣

2

8m2
πE(~p)

e−E(~p)(t2−t1)e−mπ (t−(t2−t1)−t0) , (5.1)

whereFπ is the pion form factor andQ2 is the Euclidean momentum transfer squared. The time
dependencies and overlaps cancel by dividing with an appropriate combination of two-point func-
tions:

R j0
γ5 (~p; t1, t2) =

√

4E(~p)mπ

E(~p)+mπ

√

√

√

√

G j0
γ5 (~p; t0, t1, t2, t)Gγ5(~p, t1− t0)

Gγ5(~p, t2− t0)Gγ5(
~0, t − (t2− t1)− t0)

(5.2)

whereGγ5(~p, t) is the pion two-point function at momentum~p. We search for a plateau ofR j0
γ5 (~p; t1, t2)

by varying the time differencet2−t1, as shown in Fig. 4. We perform the calculation for two source
- sink separations, namely(t − t0)/a =14 and 16 to check that we have ground state dominance.
As can be seen, we obtain consistent plateau values for both source - sink separations.

tsink/a = 16
tsink/a = 14

~p2 = 4
~p2 = 3
~p2 = 2

~p2 = 1

~p2 = 0

κ = 0.1575

(t2− t1)/a

R
at

io
:√

4p
t/

2p
t

10987654321

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

Figure 4: R j0
γ5

(~p; t1, t2) versus(t2− t1)/a for κ =

0.1575. The range used for the fit is shown by the
length of the lines.

tmQCD:mπ = 470 MeV
Hybrid: mπ = 318 MeV

VMD
mπ = 384 MeV
mπ = 510 MeV

Wilson NF=2: mπ = 690 MeV

Q2 (GeV2)

F π
(Q

2
)

3.02.52.01.51.00.50.0

1.2

1.0

0.8

0.6

0.4

0.2

Figure 5: The pion form factor for threeκ-
values. We compare with results using the hy-
brid approach from [10] and twisted mass results
from [6].

In Fig. 5 we show the pion form factor for threeκ-values compared with recent results obtained
using three-point functions. Results in the hybrid approach, that uses dynamical staggered sea
quarks and domain wall valence quarks, are obtained using sequential inversions to compute the
three-point function [10]. Results with dynamical twisted mass fermions, on the other hand, use
the one-end trick to compute the three-point function [6]. Our results compare very well to those
obtained in the latter case, which is closest to our approach. Assuming vector meson dominance
and takingmρ = 0.77 GeV we obtain the curve shown, for reference, in Fig. 5.

The ρ-meson has a Coulomb,GC, a magnetic,GM and a quadrupole,GQ form factor. They
can be parametrized in terms ofG1, G2 andG3 as

GQ = G1−G2 +

(

1+
Q2

4M2

)

G3, GM = G2, GC = G1 +
2
3

Q2

4M2 GQ

One can find combinations between initial and finalρ polarizations and insertion directions (σ )
that isolate individual form factors and for which decay to a pion is forbidden. Here we shall

6
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demonstrate the method by showing preliminary results forG1. As for the case of the pion form
factor,G1, can be extracted using onlyj0:

G j0
γk

(~p⊥; t1, t2) =
λ 2(~0)

8M2E(p⊥)
(E(p⊥)+M)2 G2

1(Q
2)e−M(t−(t2−t1)−t0)e−E(p⊥)(t2−t1) (5.3)

mρ = 0.853(37) GeV
mρ = 0.910(38) GeV
mρ = 1.002(41) GeV

Q2 (GeV2)

G1(Q2)

3.02.52.01.51.00.50.0

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Figure 6: G1 as a function of the momentum transfer
Q2 for threeκ values.

where 〈Ω|χγk |ρ(~p,s)〉 = λ (~p)εk(~p,s),

∑s εk(~p,s)ε∗
k′(~p,s) = gkk′ −

pk pk′

M2 and ~p⊥
is a momentum perpendicular to thek direc-
tion. As in the case of the pion form factor, we
construct an appropriate ratio and search for
a plateau int2 − t1. Results forG1 are shown
in Fig. 6. They carry small statistical errors
demonstrating the applicability of the method
for the extraction of theρ-meson form factors.
An analysis to extract all three form factors
and subsequently derive physical quantities is
in progress.

6. Conclusions

We have shown that the one-end trick can be applied to evaluate accuratelyfour-point func-
tions. Using this approach, the density-density correlators are computed tosufficient accuracy to
show that theρ-meson is deformed. We also obtain accurate results for the pion form factor that
compare favorably to the accuracy obtained using the one-end trick to compute the three-point
function. The advantage of using four-point functions is that only one set of inversions is needed
for all momentum transfers, unlike in the case of three-point functions where one needs new inver-
sions for each value of the momentum transfer. Preliminary results on theρ-meson form factor,G1,
carry small statistical errors demonstrating the applicability of the method also in the calculation
of the form factors of theρ-meson.
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