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We present preliminary numerical studies in Lattice QCD related to the intrinsic transverse mo-

mentum distribution of partons in the nucleon. We employ non-local operators, consisting of

spatially separated quark creation and annihilation operators connected by a straight Wilson line.

A clear signal is already obtained from a small number of configurations at a pion massmπ ≈ 600

MeV. As an example, we demonstrate that we can obtain the firstx-moment of the transverse

momentum dependent parton distribution functionf n=1
1 (~kT) from our data. Our results, which

are not renormalized, show a Gaussian-like distribution. The root mean squared transverse mo-

mentum is
√

〈~k2
T〉 ≈ 560MeV for a Gaussian fit, close to phenomenological values.
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1. Introduction

The Bjorken-x-dependence of parton distribution functions (PDFs) has been investigated by
several lattice collaborations in recent years. In these studies, the lattice operators probing the
nucleon always represent alocal continuum operator. Spatial separations between the quarkan-
nihilation and creation operator on the lattice only appearin the context of discretized covariant
derivatives.

In this study, we explore the possibility to examine the dependence on the intrinsic parton
momentum~kT as well. For the purpose of calculating transverse momentumdependent parton
distribution functions (TMDPDFs), we investigatenon-local operators, constructed from quark
and antiquark fields which are spatially separated. Gauge invariance is ensured by introduction of
a straight gauge link (Wilson line) connecting the quark fields.

2. TMDPDFs in SIDIS experiments

In experimental processes like semi-inclusive deep inelastic scattering (SIDIS), one factorizes
dominant diagrams into hard, perturbative processes and soft, non-perturbative parts [1, 2, 3], rep-
resented as shaded areas in fig. 1 a). The lower soft part can beparameterized in terms of nucleon
TMDPDFs and corresponds to a correlator

Φ[Γ](k,P,S) ≡

∫

d4ℓ

2(2π)4 eik·ℓ 〈P,S| O
Γ(ℓ) |P,S〉 , (2.1)

where O
Γ(ℓ) ≡ q(0)ΓU[0,ℓ] q(ℓ) (2.2)

Here|P,S〉 represents a nucleon state of momentumP and spinS, Γ is a Dirac matrix andk is the
quark momentum.U[0,ℓ] is a gauge link connecting the quark operators. For SIDIS, the gauge link
runs to infinity and back, as illustrated in fig. 1 b), see, e.g., ref. [4].

a) b)

c)

Figure 1: a) Factorized tree level diagram of semi-inclusive deep inelastic scattering (SIDIS), b) Gauge
link to infinity and back as in SIDIS, c) Straight gauge link
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3. First approach to TMDPDFs from the lattice

Figure 2: Step-like link
path for~l = (6,3,0).

The idea of this study is to extract TMDPDFs from matrix ele-
ments〈P,S| OΓ(ℓ) |P,S〉 calculated directly on the lattice. So far we
restrict ourselves to straight gauge link operators: in thecontinuum
limit, the gauge link follows a straight path connecting quark annihi-
lation and creation operators, see fig. 1 c). The matrix elements thus
calculated do not correspond exactly to those relevant for SIDIS, but
the resulting TMDPDFs have an interesting probabilistic interpretation

[5]. On the lattice, the gauge linkU[0,ℓ] in the operatorOΓ
lat(ℓ) is a product of link variables. Since

we work in Euclidean space-time, we can only evaluate spatial quark separationsℓ = (0,~ℓ). There-
fore we restrict our lattice operators to a single sliceτ in Euclidean time. For quark separation~l
which do not lie on thex, y or zaxis, we can approximate a straight connection with a step-like link
path, see fig. 2 (inset).

To extract a signal for nucleon matrix elements of the operators in eq. (2.2), we form ratios of
nucleon three-point and two-point functions

RΓ(τ ;~P,~ℓ) =
Γ3pt

αβ 〈 Bβ (tsink,~P) OΓ
lat(

~ℓ;τ) Bα(0,~P) 〉

Γ2pt
αβ 〈 Bβ (t,~P) Bα(0,~P) 〉

, (3.1)

whereΓ2pt andΓ3pt are suitable nucleon spin projection matrices1, and whereB(t,~P) is a nucleon
interpolating operator, composed ofu andd quark operators. Nucleon source and sink are placed at

a) b)

0 5 10 15 20
x

0

5

10

15

20

y

Figure 3: a) Evaluation of the three-point function in the numerator of eq. (3.1) on the lattice (schematic),
here for an operatorOΓ

lat with d-quarks. Only one of the two possible connected contractions of quark fields
is shown. All-to-all propagators are avoided by combining three of the quark propagators into a sequential
propagator (dark area). b) Overview of quark separations~ℓ in the x-y-plane used in this investigation. We
have calculated all quark separations which lie on the x- or y-axis, up to a length of 20 lattice units. In the
first quadrant, we have included all quark separations up to alength of 8 lattice units (inner grey circle) and
a selection of longer ones.

1LHPC usesΓ2pt = 1
2(1+ γ4) andΓ3pt = 1

2(1+ γ4)(1+ iγ5γ3)
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timestsource= 0 andtsink, respectively. The transfer matrix formalism reveals thatat a sufficiently
large distance from source and sink (0≪ τ ≪ tsink), the ratioRΓ(τ ;~P,~ℓ) becomesτ-independent.
This plateau value is directly related to the value of the matrix element〈P,S| OΓ

lat(ℓ) |P,S〉.

For the evaluation of eq. (3.1), we apply the standard technique as described, e.g., in ref. [6],
based on products of propagators and sequential propagators as illustrated in fig. 3 a). In the fol-
lowing, we present results for isovector operators (q = u− d), where disconnected contributions
are absent.

4. Test setup

In our first numerical test calculations, we use 84 MILC gaugeconfigurations from the NERSC
archive [8, 9]. The configurations were produced with the AsqTad improved staggered quark action
with 2+1 flavors. The lattice dimensions areL3×T = 203×64, with a lattice spacinga≈ 0.124fm.
The quark masses areamu,d = 0.030, andams = 0.050. The gauge configurations have been HYP
smeared and bisected in the temporal direction, and we have selected only the time slices 0. . .31.
We are using unsmeared propagators and sink-smeared sequential propagators previously calcu-
lated by the LHPC group for these chopped gauge configurations (see, e.g. [7]). The propagators
have been calculated using domain wall fermions, with the quark mass tuned such that the pion
massmπ ≈ 596MeV is approximately equal to the Goldstone pion mass forthe staggered sea
quark action. The source-sink separation istsink− tsource= 10. LHPC has calculated sequential
propagators for two nucleon momenta~P = (0,0,0) and~P = (−1,0,0). The latter corresponds to a
momentum of 500MeV in physical units.

We have explored a number of link paths in all directions. Fig. 3 b) illustrates our selection of
quark separations~ℓ in thex-y-plane. For our test runs, we have chosen two Dirac structures in the
operator: the vector caseΓ = γ4 and the axial vector caseΓ = γ3γ5.
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Figure 4: Sample plateau plots:RΓ(τ;~P,~ℓ) is plotted versusτ. The horizontal line and the error band
indicate the plateau value and its error, extracted from thepoints (marked red), atτ = 4,5 and 6. a) Real
part ofRΓ(τ;~P,~ℓ) for Γ = γ4, nucleon momentum~P = (0,0,0), and a link path five units long inx direction,
i.e. |~ℓ|= 5. b) Imaginary part ofRΓ(τ,~P,~ℓ) for Γ = γ3γ5, nucleon momentum~P= (0,0,0), and the link
path shown in fig. 2, i.e.|~ℓ| = 6.7.
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5. Preliminary Results

In fig. 4 we show two sample plots of the ratioRΓ(τ ;~P,~ℓ) versusτ . We obtain clean plateaus.
In order to extract the plateau valueRΓ(~P,~ℓ), we average over time slices atτ = 4,5 and 6.

Fig. 5 a) shows all resultsRΓ(~P,~ℓ) for Γ = γ4 and~P= (0,0,0) for the 263 evaluated link paths.
The signal is quite good, even for longer quark separations.We find that the correlator primarily
depends on the separation|~ℓ| between quark annihilation and creation operator.

In figures 5 b) (vector case, unpolarized) and 6 a) (axial vector case, polarized) we select only
link paths lying in thex-y-plane. Furthermore, we identify groups of link paths whichtransform
into one another under rotation or reflection in thex-y-plane, and take the group average. In fig.
6 b) we show an example at non-zero nucleon momentum. For quark separations~ℓ on the positive
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Figure 5: a) Results forΓ = γ4, ~P= (0,0,0). We plot ReRγ4(~P,~ℓ) for all link paths versus the separation|~ℓ|
of quark creation and annihilation operator. b) ReRγ4(

~P = 0,~ℓ) versus|~ℓ| for link paths in the x-y-plane.
Results for link paths which transform into one another under rotation or reflection have been averaged.
Dashed turquoise curve: fit to the data with a single GaussianfunctionH1(|~ℓ|), see eq. (5.1). Solid red curve:
fit with the superposition of two Gaussian functionsH2(|~ℓ|). The parameters determined from the fits are
listed in tables 1 and 2.
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Figure 6: a) ImRΓ versus|~ℓ| for Γ = γ3γ5 (axial vector), momentum~P = (0,0,0) and link paths in the
x-y-plane. Results for link paths which transform into one another under rotation or reflection have been av-
eraged. b) 1

2Re{RΓ(~ℓ)+RΓ(−~ℓ)} for Γ = γ4, ~ℓ on the positivex-axis, and non-zero nucleon momentum
~P = (−1,0,0). In both plots, the data have been fitted with a single Gaussian functionH1(|~ℓ|), see eq. (5.1).
Parameters determined from the fits are listed in table 1.
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x-axis, nucleon momentum~P = (−1,0,0) andΓ = γ4, we plot 1
2Re

{

RΓ(~ℓ)+RΓ(−~ℓ)
}

. Here we
refrain from averaging over the wholex-y-plane, because the parameterization indicates that the
value is not invariant with respect to the link direction.

We have tested the following fit functions to parameterize the |~ℓ| dependence:

H1(|~ℓ|) := C1exp

(

−
|~ℓ|2

σ2
1

)

, H2(|~ℓ|) := C1exp

(

−
|~ℓ|2

σ2
1

)

+C2exp

(

−
|~ℓ|2

σ2
2

)

. (5.1)

The resulting fit parameters are listed in tables 1 and 2. We observe that the data can be well
described by the sum of Gaussians inH2.

6. A first glimpse of TMDPDFs from the lattice

We can use the parameters of the fits in fig. 5 b) to calculate thefirst x-moment (n = 1) of the
intrinsic transverse momentum dependence of the parton density f1:

f n=1
1 (~kT) ≡

∫ 1

−1
dx
∫ ∞

−∞
dk−

(

∫

d4ℓ

2(2π)4 eik·ℓ 〈P,S| q(0)γ+
U[0,ℓ] q(ℓ) |P,S〉

)

. (6.1)

It turns out that

f n=1
1,lat (~kT) =

∫

d2~ℓT

(2π)2 e−i~kT ·~ℓT Rγ4(~P = 0, |~ℓT |) , (6.2)

fig. Γ ~P C σ 2/σ
5b) dashed γ4 (0,0,0) 0.826±0.005 (5.64±0.12)a = 0.70fm (563±12)MeV
6 a) γ3γ5 (0,0,0) 0.90±0.04 (6.58±0.12)a = 0.82fm (484±9)MeV
6 b) γ4 (−1,0,0) 0.58±0.07 (5.4±0.5)a = 0.67fm (589±46)MeV

Table 1: Fit parameters determined from the single Gaussian fits withH1 shown in fig. 5 b) and 6.

fig. Γ ~P C1 σ1 2/σ1 C2 σ2 2/σ2

5b) solid γ4 (0,0,0) 0.49 7.3a (433±15)MeV 0.37 3.4a (945±41)MeV

Table 2: Fit parameters determined from the double Gaussian fit withH2 shown in fig. 5 b)
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Figure 7: Upper curve:f n=1
1,lat (

~kT), calculated from a Fourier transform ofRγ4(
~P = 0, |~ℓ|). The upper curve

is the sum of the two dashed curves, which show the Fourier transforms of the two Gaussian components in
fit functionH2(|~ℓ|). The results are not renormalized.
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where “lat” indicates that the operator has not been renormalized. For the single Gaussian fit (func-

tion H1), we find a root mean square transverse momentum of
√

〈~k2
T〉 = 2/σ = (563±12)MeV,

see table 1. This is very well compatible with a value of≈ 500MeV used in recent phe-
nomenological investigations of HERMES data on SIDIS [10],based on the factorized Ansatz
f1(x,~kT) = f1(x)exp[−~k2

T/〈~k2
T〉]/[π〈~k2

T 〉]. Note however, that such a comparison with phenomeno-
logical results has to be taken with due caution, since the effect of renormalization of the non-local
operatorsOΓ

lat could, in principle, affect the~ℓ dependence ofRΓ. The result for the double Gaussian
fit (function H2) is shown in fig. 7 and table 2. We obtain a root mean square of the transverse

momentum of
√

〈~k2
T〉 = (702±12)MeV.

7. Conclusions and outlook

We have calculated nucleon matrix elements〈P,S| q(0)ΓU[0,ℓ] q(~ℓ) |P,S〉 with a finite separa-
tion ℓ of the quark operators. It turns out that the dependence on~ℓ is approximately Gaussian in
the channels we explored. We have used our data to obtain a first, preliminary result on transverse
momentum dependent parton distribution functions (TMDPDFs). The root mean square transverse

momentum
√

〈~k2
T〉 of our unrenormalized result forf n=1

1 (~kT) is (563±12)MeV for a single Gaus-
sian fit, a value which is compatible with phenomenological results. It will be interesting to study
the correlations with respect to the quark separation~ℓ and the nucleon momentum~P. We also plan
to investigate whether there is a lattice analogy to link paths extending to infinity and back. This
would enable us to calculate the TMDPDFs directly relevant to phenomenology.
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