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mentum is (R%) ~ 560MeV for a Gaussian fit, close to phenomenological values.
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1. Introduction

The Bjorkenx-dependence of parton distribution functions (PDFs) hanbevestigated by
several lattice collaborations in recent years. In thesdiss, the lattice operators probing the
nucleon always representl@al continuum operator. Spatial separations between the quark
nihilation and creation operator on the lattice only appeahe context of discretized covariant
derivatives.

In this study, we explore the possibility to examine the aej@mce on the intrinsic parton
momentumkr as well. For the purpose of calculating transverse momemtependent parton
distribution functions (TMDPDFs), we investigat®n-local operators, constructed from quark
and antiquark fields which are spatially separated. Gaugeiance is ensured by introduction of
a straight gauge link (Wilson line) connecting the quarkdsel

2. TMDPDFs in SIDIS experiments

In experimental processes like semi-inclusive deep itielasattering (SIDIS), one factorizes
dominant diagrams into hard, perturbative processes dhcso-perturbative parts [1, 2, 3], rep-
resented as shaded areas in fig. 1a). The lower soft part qaaréeneterized in terms of nucleon
TMDPDFs and corresponds to a correlator

okPS) = [ 00 & (S 0T S @)
where 0" () =q(0)T %o, (L) (2.2)

Here|P,S) represents a nucleon state of momentiand spinS I is a Dirac matrix and is the
quark momentumz/o 4 is a gauge link connecting the quark operators. For SIDKSg#uge link
runs to infinity and back, as illustrated in fig. 1 b), see,,edf. [4].
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Figure 1: a) Factorized tree level diagram of semi-inclusive deefaste scattering (SIDIS), b) Gauge
link to infinity and back as in SIDIS, c¢) Straight gauge link
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3. First approach to TMDPDFs from the lattice

(‘,3 The idea of this study is to extract TMDPDFs from matrix ele-

= ments(P,S 0" (¢) |P,S calculated directly on the lattice. So far we
.4 restrict ourselves to straight gauge link operators: indbetinuum
i ’ limit, the gauge link follows a straight path connecting duannihi-
0.0) lation and creation operators, see fig. 1c). The matrix eisnéhus

Figure 2:  Step-like link cajculated do not correspond exactly to those relevant S but
path forl = (6,3,0). the resulting TMDPDFs have an interesting probabilistteripretation
[5]. Onthe lattice, the gauge linkjo in the operatorﬁ,;tw) is a product of link variables. Since
we work in Euclidean space-time, we can only evaluate dppierk separationé= (0, /). There-
fore we restrict our lattice operators to a single slice Euclidean time. For quark separatiBn
which do not lie on the, y or zaxis, we can approximate a straight connection with a skepihk
path, see fig. 2 (inset).

To extract a signal for nucleon matrix elements of the opesahn eq. (2.2), we form ratios of
nucleon three-point and two-point functions

T Bg(tsink, P) OF,(F;T) By (0,P
Rr(1;P,0) = o fp(t : )4”_( T)q( )>, (3.1)
raB < BB(tvp) Ba(ov P) >

wherel 2Pt and 3Pt are suitable nucleon spin projection matrigeend whereB(t, P) is a nucleon
interpolating operator, composedwandd quark operators. Nucleon source and sink are placed at
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Figure 3: a) Evaluation of the three-point function in the numeratioeaq (3.1) on the lattice (schematic),
here for an operatcszl';1t with d-quarks. Only one of the two possible connected catitras of quark fields

is shown. All-to-all propagators are avoided by combinimge of the quark propagators into a sequential
propagator (dark area). b) Overview of quark separatianghe x-y-plane used in this investigation. We
have calculated all quark separations which lie on the x—axig, up to a length of 20 lattice units. In the
first quadrant, we have included all quark separations ugeaogth of 8 lattice units (inner grey circle) and
a selection of longer ones.

YL HPC used 2P = 1 (1 +ys) andr3Pt = 3 (1 +ys) (1 +iys)s)
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timestsource= 0 andtgink, respectively. The transfer matrix formalism reveals Hiad sufficiently
large distance from source and sink<0T < tsink), the ratioRr (T; ﬁ,?) becomeg-independent.
This plateau value is directly related to the value of therinalement(P, S| 67,(¢) |P,S).

For the evaluation of eq. (3.1), we apply the standard teglnas described, e.g., in ref. [6],
based on products of propagators and sequential propagetaliustrated in fig. 3a). In the fol-
lowing, we present results for isovector operatars=(u — d), where disconnected contributions
are absent.

4. Test setup

In our first numerical test calculations, we use 84 MILC gacmyefigurations from the NERSC
archive [8, 9]. The configurations were produced with theTshimproved staggered quark action
with 2+1 flavors. The lattice dimensions dréx T = 20° x 64, with a lattice spacing~ 0.124fm.
The quark masses aagn, g = 0.030, andams = 0.050. The gauge configurations have been HYP
smeared and bisected in the temporal direction, and we lewetad only the time slices. 0 31.
We are using unsmeared propagators and sink-smeared sabtjpespagators previously calcu-
lated by the LHPC group for these chopped gauge configusa{see, e.g. [7]). The propagators
have been calculated using domain wall fermions, with therkjmass tuned such that the pion
massm;; ~ 596 MeV is approximately equal to the Goldstone pion masdherstaggered sea
guark action. The source-sink separationgis — tsource= 10. LHPC has calculated sequential
propagators for two nucleon momerita= (0,0,0) andP = (—1,0,0). The latter corresponds to a
momentum of 500MeV in physical units.

We have explored a number of link paths in all directions.. Bilg) illustrates our selection of
quark separationéin thex-y-plane. For our test runs, we have chosen two Dirac struciarthe
operator: the vector cage= y, and the axial vector cage= ys)s.

a) b)
0.5 s 0.5
4 ’
0.4 0.4 *
§§1§§§‘ 3
= 0.3 £ 0.3 —3tdis,
s 02, . X 02
4 (= s
0.1 = 01 *
0 $00000000000000004¢ 0 FEEEEE4000000000 044
-0.1 hd s -0.1 * ¢
0 5 10 15 20 25 30 0 5 10 15 20 25 30
T T

Figure 4: Sample plateau pIoter(T;ﬁ,Z) is plotted versug. The horizontal line and the error band
indicate the plateau value and its error, extracted fronpthiats (marked red), at=4,5and 6. a) Real
part of R-(1; P, #) for [ = y4, nucleon momentur = (0,0,0), and a link path five units long indirection,
i.e.|f|=5. b) Imaginary partoRr-(1,P,7) for I = ys5, nucleon momentur = (0,0,0), and the link
path shown in fig. 2, i.el/| = 6.7.
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5. Preliminary Results

In fig. 4 we show two sample plots of the rafp(T; 5,!7) versust. We obtain clean plateaus.
In order to extract the plateau valge (P, ¢), we average over time slicesmat= 4,5 and 6.

Fig. 5a) shows all resul- (P, ¢) for I = y, andP = (0,0,0) for the 263 evaluated link paths.
The signal is quite good, even for longer quark separativvs find that the correlator primarily
depends on the separati&h between quark annihilation and creation operator.

In figures 5 b) (vector case, unpolarized) and 6 a) (axialorezzse, polarized) we select only
link paths lying in thex-y-plane. Furthermore, we identify groups of link paths whidnsform
into one another under rotation or reflection in #g-plane, and take the group average. In fig.
6 b) we show an example at non-zero nucleon momentum. Fok qaparationf on the positive
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Figure 5: a) Results fof = y4, P=(0,0,0). We plot ReR,, (P, ?) for all link paths versus the separatih

of quark creation and annihilation operator. b) Flgg(ﬁ = O,Z) versus|l7| for link paths in the x-y-plane.
Results for link paths which transform into one another undéation or reflection have been averaged.
Dashed turquoise curve: fit to the data with a single Gaugsizrtion H1(|£7|), see eq. (5.1). Solid red curve:
fit with the superposition of two Gaussian functidig(|7]). The parameters determined from the fits are
listed in tables 1 and 2.
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Figure 6: a) ImRr- versus|l7| for I = y3)5 (axial vector), momentur® = (0,0,0) and link paths in the
x-y-plane. Results for link paths which transform into onetder under rotation or reflection have been av-
eraged. b)%Re{Rr(Z) +Rr (=)} forT = y4, 7 on the positivex-axis, and non-zero nucleon momentum
P=(—1,0,0). Inboth plots, the data have been fitted with a single GanssiactionH;(|7]), see eq. (5.1).
Parameters determined from the fits are listed in table 1.
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x-axis, nucleon momentum = (—1,0,0) andl = ys, we pIot%Re{Rr(E) + R.—(—Z)}. Here we
refrain from averaging over the wholey-plane, because the parameterization indicates that the
value is not invariant with respect to the link direction.
We have tested the following fit functions to parameterize{ﬁhdependence:
. €2 . €2 €2
Hi(]¢]) := Clexp<—?> , Ha(]4]) := Clexp<—?> +Czexp<—?> . (5.1)

1 1 2

The resulting fit parameters are listed in tables 1 and 2. Vgerob that the data can be well
described by the sum of GaussiangHin

6. Afirst glimpse of TMDPDFs from the lattice

We can use the parameters of the fits in fig. 5b) to calculatéirsiex-moment (= 1) of the
intrinsic transverse momentum dependence of the partositgdh:

£ (kr) z/_ldx/_mdk* (/ 2&5)4 e (PRI T(0) v %oy q(ﬁ)!F’7S>> - 61

It turns out that

s a2l oo . -
ZEIa:tL(kT) = / (27‘[)26 kot RVA(P:OaMTD ) (6.2)
fig. | r | P | C | o | 2/0
5b)dashed v | (0,0,0) | 0.826:0.005 | (5.64+0.12)a=0.70fm | (563+ 12) MeV
6a) sy | (0,0,0) 0.90+0.04 | (6.584+0.12)a=0.82fm | (484+9)MeV
6b) va | (—1,0,0) 0.58+0.07 (54+£05)a=0.67fm | (589+46)MeV

Table 1: Fit parameters determined from the single Gaussian fitskitshown in fig. 5b) and 6.

fig. Ir] P | c| o] 2/0, | ¢ | o | 2/0,
5b) solid | y4 | (0,0,0) || 0.49 | 7.3a | (433£15)MeV || 0.37 | 3.4a | (945+41)MeV

Table 2: Fit parameters determined from the double Gaussian fitdtehown in fig. 5b)
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Figure 7: Upper curve:ff;%(RT), calculated from a Fourier transform Bf, (P = 0, |7]). The upper curve
is the sum of the two dashed curves, which show the Fouriesfmams of the two Gaussian components in
fit functionHz(|¢]). The results are not renormalized.
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where “lat” indicates that the operator has not been renkzeth For the single Gaussian fit (func-

tion H;), we find a root mean square transverse momentu@ =2/0 = (563+12)MeV,

see table 1. This is very well compatible with a value ~of500MeV used in recent phe-
nomenological investigations of HERMES data on SIDIS [1f§sed on the factorized Ansatz
f1(x, k) = f1(x) exp—k2 /(k2)]/[r(k)]. Note however, that such a comparison with phenomeno-
logical results has to be taken with due caution, since tteetedf renormalization of the non-local
operatorszﬁlglt could, in principle, affect th@dependence dRr. The result for the double Gaussian
fit (function Hy) is shown in fig. 7 and table 2. We obtain a root mean squareeofrdnsverse

momentum ofy/ (k2) = (702+ 12) MeV.

7. Conclusions and outlook

We have calculated nucleon matrix elemefRsS q(0) " % q(?) |P,S) with a finite separa-
tion ¢ of the quark operators. It turns out that the dependencéismpproximately Gaussian in
the channels we explored. We have used our data to obtain,pfeminary result on transverse
momentum dependent parton distribution functions (TMDBDHFhe root mean square transverse

momentumy/ (k) of our unrenormalized result fdf=" (kr ) is (563 12) MeV for a single Gaus-
sian fit, a value which is compatible with phenomenologiesluits. It will be interesting to study
the correlations with respect to the quark separafiand the nucleon momentufh We also plan
to investigate whether there is a lattice analogy to linkhpaixtending to infinity and back. This
would enable us to calculate the TMDPDFs directly relevamqittenomenology.

Acknowledgments

Thanks are due to Vladimir Braun for helpful discussions emthe members of the LHPC
collaboration for providing propagators and technicaleztipe. B. M. and Ph. H. acknowledge
support by the DFG Emmy Noether-program and A. S. by BMBFsTark was supported in part
by funds provided by the U.S. Department of Energy undertdd&iFG02-94ER40818.

References

[1] J. C. Collins, D. E. Soper and G. Sterman, Phys. Lett38(1984) 263.

[2] P. J. Mulders and R. D. Tangerman, Nucl. Phy<l8 (1996) 197 [Erratum-ibid. B84 (1997) 538].
[3] X.D.Ji,J.P.Maand F. Yuan, Phys. Rev./2 (2005) 034005.

[4] D. Boer, P. J. Mulders and F. Pijiman, Nucl. Phys6&7(2003) 201.

[5] J. P. Ralston and D. E. Soper, Nucl. Physl®(1979) 109.

[6] D. Dolgovet al.[LHPC collaboration], Phys. Rev. B6 (2002) 034506.

[7]1 Ph. Hagleret al.[LHPC Collaboration], arXiv:0705.4295 [hep-lat].

[8] K. Orginos and D. Toussaint [MILC collaboration], Phygev. D59 (1999) 014501.

[9] K. Orginos, D. Toussaint and R. L. Sugar [MILC Collabdoatf, Phys. Rev. D60 (1999) 054503.

[10] M. Anselmino, M. Boglione, U. D’Alesio, A. Kotzinian,.”Murgia and A. Prokudin,
Phys. Rev. D71 (2005) 074006.



