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The internal structure of hadrons is important for a variety of topics, including the hadron form

factors, proton spin and spin asymmetry in polarized proton scattering. For a systematic study

generalized parton distributions (GPDs) encode important information on hadron structure in the

entire impact parameter space. We report on a computation of nucleon GPDs based on simula-

tions with two dynamical non-perturbatively improved Wilson quarks with pion masses down to

350MeV. We present results for the total angular momentum of quarks with chiral extrapolation

based on covariant baryon chiral perturbation theory.
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1. Introduction

The internal structure of nucleons has attracted much attention in the contexts of the nucleon
form factors, proton spin and spin/charge asymmetry in deeply virtual Compton scattering and
so on. For a systematic study of the nucleon internal structure, generalized parton distributions
(GPDs) are introduced through the off-forward matrix elements of quark-bilinear operators:

∫
dη
4π

eiηx〈P′|q̄(−ηn
2 )γµU q(ηn

2 )|P〉= N̄(P′)
(

γµH(x,ξ , t)+ i σ µν ∆ν
2M E(x,ξ , t)

)
N(P), (1.1)

with a light cone vectorn and the momentum transfer∆ = P′−P as functions of the quark momen-
tum fractionx, the skewednessξ = −n ·∆/2 and the virtualityt = ∆2. The axial counterparts are
denoted byH̃ andẼ. Since the GPD is defined with the finite momentum transfer in contrast to the
conventional parton distribution functions, partons bring us the informations on hadron structure in
the transverse space.

In this contribution, we report on the first moments of GPD, so called generalized form factors,
for nucleon, as a function of the virtuality calculated on the lattice with unquenched configurations
of QCDSF/UKQCD collaboration.

In the forward limit these generalized form factors provide the total angular momentum of
quark in the nucleon through Ji’s sum rule [1],

Jq =
1
2

∫ 1

−1
dxx(H(x,ξ ,0)+E(x,ξ ,0))≡ 1

2
(A20(t = 0)+B20(t = 0)). (1.2)

Combined with the quark spin contributions to the nucleon obtained as the forward value of the
axial form factor,

sq =
1
2

∫ 1

−1
dxH̃(x,ξ ,0)≡ 1

2
Ã10(t = 0), (1.3)

we compute the orbital angular momentum of quarks asLq = Jq− sq. Using the results of chiral
perturbation theory (χPT) for chiral extrapolation to the physical point, we discuss the angular
momentum carried by quark in the nucleon.

2. Generalized form factors on the lattice

The Mellin moments of the GPDs are known to be expressed by polynomials in terms ofξ
[2],

∫ 1

−1
dxxn−1

[
H(x,ξ , t)
E(x,ξ , t)

]
=

[(n−1)/2]

∑
k=0

(2ξ )2k

[
An,2k(t)
Bn,2k(t)

]
±δn,even(2ξ )nCn(t). (2.1)

The generalized form factorsAn,2k,Bn,2k andCn are defined from the coefficients of this expansion.
Since the integration byx makes the quark operator local, the(n−1)-th moments can be calculated
[3] on the lattice through the matrix element of〈P′|q̄γ{µ1Dµ2 · · ·Dµn}q|P〉 by taking a ratio of the
three- and two-point functions.

To estimate these correlation functions, 400 to 2200 configurations are used for eachβ ,κ with
two flavor Wilson fermion with the clover improvement. Simulations are performed with various
set of parametersβ andκ corresponding to the lattice spacing less than 0.09fm and pion mass cov-
ering from order of 1GeV down to 350MeV with a reference scaler0 = 0.467fm. Nonperturbative

2



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
7
)
1
5
8

Moments of GPD and quark angular momentum of the nucleon Munehisa Ohtani

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0 0.2 0.4 0.6 0.8 1 1.2
-t [GeV2]

A10(t)
~

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

0 0.2 0.4 0.6 0.8 1
m π

2 [GeV2]

A10(0)
~

Figure 1: The isoscalar axial form factor̃A10(t) for β = 5.29, κ = 0.13632with dipole fit (left) and the
forward values withχPT fit (right). The open star in the right panel represents the latest experimental value
of HERMES.

renormalizations are incorporated to convert the lattice results into the values in theMS scheme at
a scale ofµ2 = 4GeV2. TheO(a) improvement of the quark energy-momentum tensor are carried
out through the boosted perturbation theory following ref.[4] and the tadpole improved version
is used for the axial current following ref.[5]. We note that the contributions from disconnected
diagrams are not included in the present lattice results.

3. Lattice simulation results and chiral extrapolation

We focus on the generalized form factorsA20 andB20 as well as the axial form factor̃A10 to
evaluate the quark angular momentum in the nucleon.

Typical t dependence of the axial form factor in the isoscalar channel are shown in Fig.1. The
obtained lattice data agrees well with a fitting by the dipole form,Ã10(0)/(1− t/m2)2. The forward
values obtained by settingt = 0 present a smooth pion-mass dependence as shown in the right panel
of Fig.1.

Here we use an expression derived in a heavy baryonχPT [6],

Ãu+d
n,k (0) = αn,k

[
1− 3m2

πg2
A

16π2F2
π

(
ln

m2
π

λ 2 +1

)]
+βn,km

2
π +O(m3

π), (3.1)

for the chiral extrapolation with fitting parametersα10 andβ10 at a scale ofλ = 1GeV. As the heavy
baryon formalism is valid only for the small pion mass, we restrict the data points at pion masses
less than 500MeV. Then it turns out that the chiral log term gives a strongmπ dependence for small
mπ region and the extrapolated value is eventually comparable with the latest experimental value
of deep-inelastic scattering reported by HERMES [7]. With this extrapolation, we obtain the quark
spin contribution in the nucleon as̃Au+d

10 (0)≡ 2su+d = 0.402±0.024at the physical pion mass.
Next we show a typicalt dependence of generalized form factorsA20,B20 and C2 in the

isovector channel in Fig.2. Up to 1GeV2, the lattice results ofA20 agree with the dipole fit
A20(0)/(1− t/m2

D)2. The dipole massmD of A20 shows a smoothmπ dependence shown in the

3
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Figure 2: Generalized form factors in the isovector channel forβ = 5.29, κ = 0.13632with dipole fit for
A20 and the dipole mass ofA20. The open star represents the experimental value off2 tensor meson mass.

right panel of Fig.2. We see that the dipole mass seems to extrapolate to the observed mass of
tensor mesonf2 at the physical point. This fact contrasts with a mass scale of the electromagnetic
form factors comparable with the vector meson mass [8].

However, the empirical dipole fit for the generalized form factors has no solid justification
from a theoretical point of view. Therefore we count on the covariant baryon chiral perturbation
[9] to extract the forward values ofB20 as well as the chiral extrapolation ofA20 andB20.

The forward values ofA20 are identical to the quark momentum fraction〈x〉q and are shown
as a function ofm2

π in Fig.3. Both in the isoscalar and isovector channel, the lattice results show
a moderate pion mass dependence. These values are extrapolated to the physical point by the
following eqs. derived in the baryonχPT,

Au+d
2,0 (0) = as

20+c9
4m2

π
M2

0

−as
20

3g2
Am2

π
16π2F2

π

[
m2

π
M2

0

+
m2

π
M2

0

(
2− m2

π
M2

0

)
ln

mπ

M0

+
mπ√

4M2
0−m2

π

(
2−4

m2
π

M2
0

+
m4

π
M4

0

)
arccos

mπ

2M0


+O(p3), (3.2)
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Figure 3: The forward values ofA20 in the isoscalar (left) and isovector (right) channel withχPT fits. The
open stars represent the phenomenological values from CTEQ6.
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Figure 4: The forward values ofB20 extrapolated byχPT in the isoscalar (left) and isovector (right) channel
with χPT fits.

for the isoscalar channel and

Au−d
2,0 (0) = av

20+c8
4m2

π
M2

0

+av
20

g2
Am2

π
16π2F2

π

[
−

(
3+

1

g2
A

)
ln

m2
π

λ 2 +
m2

π
M2

0

−2+
m2

π
M2

0

(
6− m2

π
M2

0

)
ln

mπ

M0

+
mπ√

4M2
0−m2

π

(
14−8

m2
π

M2
0

+
m4

π
M4

0

)
arccos

mπ

2M0


 (3.3)

+∆av
20

g2
Am2

π
48π2F2

π

[
2

m2
π

M2
0

+
m2

π
M2

0

(
6− m2

π
M2

0

)
ln

m2
π

M2
0

+2mπ
(4M2

0−m2
π)3/2

M4
0

arccos
mπ

2M0

]

for the isovector channel, whereM0 is the nucleon mass in the chiral limit. We perform 2-parameter
fits with as

20, c9 for the isoscalar andav
20, c8 for the isovector channel at a scale ofλ = 1GeV and

fixed the other values following ref.[9]. A strong mπ dependence is observed especially for the
isovector channel, but the extrapolated values in both channels overshoot beyond the phenomeno-
logical values estimated using the CTEQ6 parton distribution functions. The chiral extrapolation
givesAu+d

20 ≡ 〈x〉u+d = 0.572±0.012for the isoscalar channel andAu−d
20 ≡ 〈x〉u−d = 0.198±0.008

for the isovector channel at the physical pion mass. See ref.[10] for discretization effects of these
form factors.

In contrast toA20, the forward values ofB20 cannot be calculated directly from the lattice
simulation since the kinematic pre-factor forB20 vanishes at zero momentum transfer. Again we
use the expressions of covariant baryonχPT [9],

Bu±d
2,0 (t) = (bs,v

20 + δ̂ s,v
B m2

π + δ̂ s,v
Bt t)

MN(mπ)
M0

∓as,v
20

(2±1)g2
AM2

0

48π2F2
π

G(t), (3.4)

G(t) =
∫ 1

2

− 1
2

du

M̃8

[
(
M2

0− M̃2)M̃6 +9m2
πM2

0M̃4−6m4
πM2

0M̃2 +6m2
πM2

0

(
m4

π −3m2
πM̃2 + M̃4) ln

mπ

M̃

− 6m3
πM2

0√
4M̃2−m2

π

(
m4

π −5m2
πM̃2 +5M̃4

)
arccos

mπ

2M̃

]∣∣∣∣∣
M̃2=M2

0+(u2− 1
4)t

,

to fit the lattice results as a function oft andmπ . Free fit parameters arebs,v
20 , δ̂ s,v

B andδ̂ s,v
Bt for the

isoscalar and isovector channel respectively, and the parameters ofas,v
20 are fixed by the fitting of
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Figure 5: Total angular momentum of quark in the nucleon withχPT fit (left) and spin, orbital angular
momentum of quarks (right). The open symbols represent the extrapolated values to the physical pion mass.

Au±d
20 . The forward values ofB20 extracted from this fit with fixedmπ are shown in Fig.4, where the

solid lines represent the section of fitting surfaces att = 0.

Since the forward value ofBu+d
20 is equivalent to the difference of2Jq−〈x〉q, the small values

of the lattice results indicate the cancellation between total angular momentum and momentum
fraction of quarks. However, theχPT fit suggests a sizeable bending through the chiral extrapo-
lation, which makes a sharp contrast to the chiral quark soliton model [11]. We obtainBu+d

20 (0) =
−0.120±0.023at the physical point for the isoscalar channel andBu−d

20 (0) = 0.269±0.020for the
isovector channel.

Combining all these data, we can estimate the angular momentum of quarks in the nucleon.
The pion mass dependence of the total angular momentumJq for u and d quark is shown in Fig.5.
The strongmπ dependences ofA20 in the isovector channel andB20 in the isoscalar channel are en-
hanced for the u quark and gives a significant suppression ofJu near the physical point, while these
dependences cancel each other for the d quark and so keep the value ofJd small. The extrapolation
to the physical point givesJu = 0.230±0.008andJd =−0.004±0.008.

The quark spinsq, the total and orbital angular momentumLq = Jq−sq are shown in the right
panel of Fig.5. We obtain the values at physical point by the chiral extrapolation asJu+d = 0.226±
0.013, su+d = 0.201± 0.024 andLu+d = 0.025± 0.027. The results show that the total angular
momentum of quark is comparable with the quark spin and hence the orbital angular momentum is
consistent with zero, which agrees with the result of ref.[12].

4. Conclusions

We have carried out lattice simulations to calculate the first moments of GPDs, which play an
important role for the proton spin, quark transverse density and deeply virtual Compton scattering.
The lattice results of the generalized form factorA20 are fitted to the dipole form for small−t region
and the dipole mass turns out to be comparable with the observed tensor meson mass. Since this
empirical fit has no solid justification from a theoretical point of view, we employ baryonχPT to
take the forward limit ofB20 and to chirally extrapolate the form factors to the physical pion mass.
The resulting values indicate that the total angular momentum of quarks in the nucleon is of the
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same size as the quark spin contribution, while the orbital angular momentum is consistent with
zero.

Further analyses are needed to estimate the finite size effects [13], contributions from discon-
nected diagrams and so on. Results with lighter pion masses will be forthcoming.
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