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1. Introduction

Protons and neutrons constitute most of the material world around us. This makes them the
most important particles subject to the strong interaction. Their electromagnetic form factors were
among the first quantities investigated in hadron structure and they are known for several decades.
For a recent review on the status of experiment and phenomenology consult [1]. Nonetheless,
despite all the scrutiny they are still subject to surprises. Recently, a series of experiments has been
performed at Jefferson Lab [2]. These have revealed surprising new features of the form factors —
namely, that their ratio F2

�
Q2 ��� F1

�
Q2 � does not behave as was expected from previous experiments

and as predicted by perturbative QCD. Resolving this mystery requires model-independent non-
perturbative methods. Lattice QCD provides such a method without model assumptions.

A theoretical explanation of the behavior of the form factor ratio has been suggested in [3].
In fact, lattice calculations have recently been found to show similar behavior [4, 5, 6]. This is an
example of how lattice calculations can give important feedback to phenomenology and experiment
already today.

This paper focusses on the calculation of the behavior of the electromagnetic vector and axial
form factors of the isovector combination p � n, i.e., the difference between up- and down-quarks
unless explicitely stated otherwise. Due to isospin symmetry the disconnected contributions cancel
in this situation and there is no additional systematic error other than the usual lattice systematics.
From the Lorentz-invariant expansions of the vector and the axial currents, we define the form
factors via �

N
�
	
p � �
� Jµ �N �
	p ���� ū

�
	
p � ��� γ µ F1

�
Q2 ��� iqα

2mN
σ αµF2

�
Q2 ��� u

�
	
p ���

�
N
��	
p � �
�Aµ �N �
	p ���� ū

�
	
p � ��� γ µ GA

�
Q2 ��� qµ

2mN
GP
�
Q2 ��� γ5u

��	
p ��� (1.1)

with
	
p � ( 	p) being the initial (final) nucleon momentum, q � p � � p, Q2 � � q2 the virtual momentum

transfer, and mN being the nucleon mass.
We employ two flavors of dynamical Wilson-clover fermions with pion masses as low as mπ

�
350 MeV [7]. The lattice spacing varies between a � 0 � 065 ����� 0 � 08 fm where the scale has been
set by r0

� 0 � 45 fm. This technology has the advantage that it extends the successful calculations
of the past decade without conceptual problems like square roots of sea quarks, flavor and/or taste
breaking, residual masses or absence of unitarity away from the continuum limit. The technology
to extract form factors has been covered in detail in [8, 9].

2. Vector form factors

To investigate the large-distance behavior of the vector form factors we adopt the following
parameterizations of F

�
Q2 � as functions of Q2:

F1
�
Q2 ��� A

1 � c12Q2 � c14Q4
�

F2
�
Q2 ��� 1 � κ

1 � c22Q2 � c26Q6 � (2.1)
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These parameterizations have been inspired by [3, 10] by neglecting logarithmic corrections. Such
perturbative logarithms are not expected to play a role for the energy range Q2 � 4 GeV2 we
are investigating. The normalization factor, A, is used to fix the renormalization constant. Due
to charge conservation, we must have F1

�
Q2 ��� 1 which fixes the operator renormalization. The

parameterizations Eqs. (2.1) have a couple of important properties:� The fulfill the superconvergence relation� � ∞� 4m2
π

dQ2 ImF1 ! 2 � Q2 �"� 0 � � � ∞� 4m2
π

dQ2 Q2 ImF2
�
Q2 �"� 0 �

� They fulfill the expected asymptotic behavior

F1 ∝ 1 � � Q2 � 2 � F2 ∝ 1 � � Q2 � 3 �
� They should exhibit an effective resonance pole for negative Q2. In particular, we will verify

below that the location of the pole lies at the vector meson mass. This serves as a consistency
check between our lattice calculation and phenomenology.

Alternatively, one can use dipole and tripole-type fit formulae [5, 6]. We believe, however, that
the parameterizations in Eqs. (2.1) describe the physics better. It is important to point out that the
lattice data does not cover a sufficiently large range of Q2 values to allow us to favor one form over
another. Hence, we require additional phenomenological input and perform consistency checks by
probing the location of the poles of F1

�
Q2 � in Eq. (2.1).

From the parameterizations in Eq. (2.1) we can obtain the charge radii via a Taylor expansion

Fi
�
Q2 �#� Fi

�
0 ��� 1 � 1

6
�
r2

i
 Q2 �%$ � Q4 ���&� �

r2
i
"� 6ci2 � (2.2)

It is evident that the radius only depends on c12/c22, but not on the higher coefficients of the powers
Q4/Q6.

The first question we address is the flavor-dependence of the connected contribution to the
charge radius,

�
r2

1
 . Figure 1 shows the different charge radii as a function of the pion mass at a

fixed value of β � 5 � 29. For large pion masses the difference is below the statistical uncertainty. As
the pion mass decreases, however, the difference starts to become significant. This is an excellent
example of why going towards sufficiently light quarks is crucial to study phenomena related to
hadron structure.

As it is evident from Eq. (2.1) the expression for F1
�
Q2 � has in general two poles in the com-

plex Q2 plane. Both poles can either be complex — with a common real part — or real — with a
lower and an upper mass. From the vector meson dominance model we expect the lower real pole
and the real part of the complex poles to be around the vector meson mass. Figure 2 shows the
location of the lower real/real part of the poles divided by the vector meson mass at each work-
ing point. For u-quarks we find mostly two real poles with a few complex poles at some working
points. For d-quarks we find complex poles exclusively. While the real poles are indeed compatible
with the vector meson mass, the real parts of the complex poles scatter more strongly and tend to
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Figure 1: Difference in connected part of the charge radii for up- and down-quarks vs. the pion mass.

0 500 1000 1500
mπ / MeV

0.2

0.4

0.6

0.8

1

1.2

1.4

m
Po

le
 / 

m
ρ

u-quarks, low real pole
u-quarks,  complex pole

0 500 1000 1500
mπ / MeV

0.2

0.4

0.6

0.8

1

1.2

1.4

m
Po

le
 / 

m
ρ

d-quarks, complex pole

Figure 2: Location of the real part of the pole masses for u/d quarks (left/right panel). For u-quarks we find
mostly two real poles and complex poles at a few working points. For d-quarks we find only complex poles.

lie somewhat lower. Understanding this phenomenon better would further improve our picture of
the nucleon.

The dependence of the charge radii on the pion mass has been studied by different groups [11,
8]. In the following we focus on the small-scale expansion (SSE) given in [8]. Figure 3 shows
the lattice results for

�
r2

1
 together with the experimental point denoted by a star. The dashed

curve is the SSE expression with phenomenologically reasonable values for the parameters. The
curve grows to infinity as the pion mass goes to zero. Furthermore, it vanishes at a finite value of
the pion mass. The latter behavior is unphysical, so we conclude that (not surprisingly) the SSE
expression at the order considered does not describe this quantity over the entire range of pion
masses available.

Figure 4 shows the results of a combined fit of all lattice data for
�
r2

2
 and κv. In these ex-

pressions there are four parameters that we fit. The error bands show the statistical errors and the
systematic error due to higher orders in the chiral expansion as determined by varying the individ-
ual fit parameters and checking the stability of the result [12]. For

�
r2

2
 the extrapolation misses the

experimental data point, while for κ v we find that the extrapolation is compatible with the experi-
mental data point. It is premature to conclude that the expansion fails for

�
r2

2
 as it did for

�
r2

1
 since

the uncertainties of the input parameters may be underestimated. Nonetheless, the range of appli-
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Figure 3: Isovector radius ' r2
1 ( as a function of the pion mass. The experimental value is denoted by a star,

the dashed line is the expression obtained from the SSE.
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Figure 4: Isovector radius ' r2
2 ( (left panel) and anomalous magnetic moment κ v (right panel) from a com-

bined fit of all lattice data. The rescaling has been explained in Ref. [8]. The experimental values are denoted
by stars. The error bands are statistical (shaded gray) and systematical (dotted cyan).

cability of the chiral expansion is limited and further study is needed to accumulate sufficiently
accurate data points at sufficiently small pion masses.

3. Axial form factors

Analogous to the form factors F1
�
Q2 � and F2

�
Q2 � the axial form factor, GA

�
Q2 � , and the in-

duced pseudoscalar form factor, GP
�
Q2 � , can be calculated. For a review on experimental methods

and phenomenological parameterizations see [13]. The axial form factor is usually fitted using a
dipole ansatz

GA
�
Q2 �"� gA�

1 � Q2 � M2
A
� 2 � (3.1)

with the axial coupling gA being one of the milestones of lattice QCD calculations [14], see
also [15]. The induced pseudoscalar coupling GP

�
Q2 � is well understood and can be fitted using a

pion-pole ansatz for sufficiently small mπ and Q2, see [13]:

GP
�
Q2 �)� 4mNgπN fπ

m2
π
� Q2 � 2

3
gAm2

N
�
r2

A
��%$ � Q2 � m2

π
� � (3.2)
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Figure 5: Isovector axial form factors for a sample working point at our lowest pion mass of mπ * 350 MeV.
The axial form factor (left panel) is fitted using a dipole form, the experimental best dipole fit is included. The
pseudoscalar form factor (right panel) is fitted using a pion pole expression with the evaluated pseudoscalar
mass being shown for comparison.

We want to test this ansatz by verifying that the position of the pole is exactly at the position of the
pion mass at this working point.

Our results for GA
�
Q2 � and GP

�
Q2 � are shown in Fig. 5 for a sample working point at our

lowest pion mass of mπ
� 350 MeV. The axial coupling fitted with a dipole is compared to the

corresponding experimental result. It is evident that the lattice curve is flatter, implying that the
heavy quarks on our lattice build a smaller nucleon than Nature — a phenomenon that has been
observed previously for the vector form factors, cf. Figs. 3 and 4. The induced pseudoscalar form
factor indeed exhibits a pole at the location of the measured pion mass — as indicated in the plot
by a vertical bar. It is evident that the pole obtained from the fitted pion-pole parameterization is
fully consistent with the value of the pion mass. Hence, our fit seems to be remarkably consistent
with the expression Eq. (3.2).

4. Summary

We have successfully measured the vector and the axial vector form factors. For the vector
form factors a variety of chiral expansions is available. The radius

�
r2

1
 cannot be described well,

while the situation for
�
r2

2
 and κv is more favorable. The axial form factor GA

�
Q2 � turns out to

be described well by a dipole formula — just like the experimental data — but the curve is flatter
indicating that also in this situation a proper chiral extrapolation is essential. We verified that the
induced pseudoscalar form factor, GP

�
Q2 � , is described excellently by the pion pole picture already

at mπ
� 350 MeV.

We conclude by pointing out that dynamical clover fermions provide a viable technology to
treat QCD with light quarks. The currently running simulations may extend down to pion masses
as low as mπ

� 250 MeV within the next year. We are optimistic to reach mπ
� 200 MeV by the

end of this decade.
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