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1. Introduction

Form factors are fundamental quantities which characterize important features of the hadrons
such as their size, charge distribution and magnetization. In this work we present a calculation
of the axial form factors of the nucleon and the nucleon (N) to∆ transition [1]. Spontaneous
breaking of axial symmetry in QCD is manifest in the existence of light pseudo-Goldstone bosons.
The smallness of the pion mass is connected to the axial symmetry breaking through thepartial
conservation of axial current (PCAC) hypothesis, which relates the divergence of the axial vector
current to the pion field. This translates into the pion-pole dominance of the induced nucleon
pseudoscalar form factor,Gp(q2). Furthermore, it relates the nucleon axial chargegA, to theπNN
coupling,gπNN via the well known Goldberger-Treiman relation (GTR),mNgA = fπgπNN , where
fπ is the pion decay constant andmN the mass of the nucleon. Similarly, PCAC applied to the
N to ∆ transition, leads to the assumption of pion-pole dominance in the case ofCA

6 and to the
non-diagonal GTR, 2mNCA

5 = fπgπN∆, wheregπN∆ is the strong coupling constant associated with
theπN∆ vertex. Our calculation of the nucleon axial vector form factors,GA(q2) andGp(q2), as
well as the pseudoscalar form factorGπNN , for a range of pion masses down to 380 MeV, both in
the quenched theory and using two degenerate flavors of dynamical Wilson fermions, enables us to
check pion-pole dominance and the Goldberger-Treiman relation. Similarly, inthe case of the N to
∆(1232) weak current transition, we evaluate the corresponding dominant form factorsCA

5 (q2) and
CA

6 (q2), as well as the pseudoscalar form factorGπN∆, using besides Wilson fermions, dynamical
staggered quark configurations generated by the MILC collaboration and domain wall fermions
for pion masses as low as 360 MeV. The evaluation of both nucleon and N to∆ transition form
factors enables us to check theq2-dependence of ratios of transition to nucleon form factors, such
asGπN∆(q2)/GπNN(q2) andCA

5 (q2)/GA(q2), which show a weaker quark mass dependence and are
more likely to show less sensitivity to lattice systematics.

2. Axial Form Factors and the Pion Pole

We take the u- and the d- quarks to be degenerate and work in terms of the fermion isospin
doubletψ . The axial vector and pseudoscalar currents are given byAa

µ(x) = ψ̄(x)γµγ5
τa

2 ψ(x) and

Pa(x) = ψ̄(x)γ5
τa

2 ψ(x) respectively, whereτa are Pauli-matrices acting in flavor space. The matrix
element of the weak axial vector current between nucleon states is written as

〈N(p′,s′)|A3
µ |N(p,s)〉 = i

(

m2
N

EN(p′)EN(p)

)1/2

ū(p′,s′)

[

(

GA(q2)γµ γ5 +
qµ

2mN
Gp(q

2)

)

]

τ3

2
u(p,s) (2.1)

with the axial vector,GA(q2), and the induced pseudoscalar form factor,Gp(q2), being functions
of the invariant momentum transfer squared,q2 = (p′ − p)2. Experimentally, the axial charge
of the nucleon,gA ≡ GA(0) is very well known from the neutronβ -decay and takes the value
gA = 1.2695(29). The momentum dependence ofGA has been extracted from pion electropro-
duction or quasielastic neutrino scattering experiments (see Ref. [2] for reviews) and it is con-

ventionally parameterized by a dipole form,GA(q2) = gA/
(

1− q2

M2
A

)2
, with an axial mass,MA =

1.026±0.0021GeV. The induced pseudoscalar form factorGp(q2) is less well studied experimen-
tally [2], with ordinary and radiative muon capture experiments giving different results. Both form
factors have been studied in the context of chiral effective theories [2].
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In QCD the explicit breaking of axial current conservation leads to the axial Ward-Takahashi
identity, ∂ µAa

µ = 2mqPa, wheremq is the renormalized quark mass. Using PCAC we have the
relation,∂ µAa

µ = fπm2
ππa, and therefore the pion field is expressed in terms of the pseudoscalar

current asπa = 2mqPa/ fπm2
π . Taking the matrix element of the pseudoscalar density between

nucleon states, theπNN form factor is obtained via

2mq < N(p′,s′)|P3|N(p,s) >=

(

m2
N

EN(p′)EN(p)

)1/2
fπm2

π GπNN(q2)

m2
π −q2 ū(p′,s′)iγ5

τ3

2
u(p,s). (2.2)

Using the PCAC hypothesis together with Eq. (2.2) we obtain the diagonal Goldberger-Treiman
relation

GA(q2)+
q2

4m2
N

Gp(q
2) =

1
2mN

2GπNN(q2) fπm2
π

m2
π −q2 . (2.3)

In the chiral limit, the pole on the right hand size of Eq. (2.3) must be compensated by a similar
singularity inGp(q2) sinceGA(0) is finite. Therefore, assuming pion-pole dominance,Gp(q2) is
given by

1
2mN

Gp(q
2) ∼

2GπNN(q2) fπ

m2
π −q2 (2.4)

and substituting in Eq. (2.3) we obtain the well known relation,mNGA(q2) = fπGπNN(q2).
The invariant proton to∆+ weak matrix element is expressed in terms of four transition form

factors as

< ∆(p′,s′)|A3
µ |N(p,s) > = i

√

2
3

(

m∆mN

E∆(p′)EN(p)

)1/2

ūλ
∆+(p′,s′)

[(

CA
3 (q2)

mN
γν +

CA
4 (q2)

m2
N

p′ν
)

(

gλ µgρν −gλρgµν
)

qρ +CA
5 (q2)gλ µ +

CA
6 (q2)

m2
N

qλ qµ

]

uP(p,s). (2.5)

The form factorsCA
3 (q2) andCA

4 (q2) belong to the transverse part of the axial current and, as was
recently demonstrated [3], both are suppressed relative toCA

5 (q2) andCA
6 (q2). The pseudoscalar

transition form factor,GπN∆, is defined similarly toGπNN , via

2mq < ∆(p′,s′)|P3|N(p,s) >= i

√

2
3

(

m∆mN

E∆(p′)EN(p)

)1/2 fπ m2
π GπN∆(q2)

m2
π −q2 ūν

∆+(p′,s′)
qν

2mN
uP(p,s) . (2.6)

TheπNN andπN∆ coupling constants are defined atq2 = m2
π asgπNN = GπNN(m2

π) andgπN∆ =

GπN∆(m2
π). The dominant form factorsCA

5 (q2) andCA
6 (q2), which belong to the longitudinal part

of the axial current, are related via PCAC toGπN∆(q2):

CA
5 (q2)+

q2

m2
N

CA
6 (q2) =

1
2mN

GπN∆(q2) fπm2
π

m2
π −q2 , (2.7)

which is known as the non-diagonal GTR. Pion-pole dominance forCA
6 (q2), as forGp(q2), leads to

the relationsCA
6 (q2) ∼ mNGπN∆(q2) fπ/2(m2

π −q2) and 2mNCA
5 (q2) = fπGπN∆(q2). It is clear from

the above relations thatCA
5 is analogous toGA andCA

6 analogous toGp.
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3. Lattice techniques

The techniques used for the evaluation of the axial form factors were developed for the study of
the electromagnetic form factors [4, 5, 6]. In the evaluation of the three-point functions involved in
the calculation of the electromagnetic nucleon and N to∆ transition form factors we use sequential
inversion through the sink, thereby obtaining the form factors for all momentum transfers. This
method requires fixing the source-sink time separation, as well as the initial and final hadron states,
but allows the insertion of any operator with arbitrary momentum at any time slice.An important
ingredient of our method is the construction of optimal sources and sinks using a linear combination
of interpolating fields. It was shown in Refs. [1, 3] that, for axial operators, the most symmetric
linear combination of matrix elements that can be considered is

3

∑
k=1

ΠA(0,−q ;Γk; µ = j) = i
C

4mN

[

(EN +mN)
(

δ1, j +δ2, j +δ3, j
)

GA(Q2)− (q1 +q2 +q3)
q j

2mN
Gp(Q

2)

]

,

(3.1)

where j = 1,2,3 labels the spatial current direction,Γ projects to definite nucleon spin states and
C is a kinematical factor.ΠA(p′,p ;Γ; µ) is the large Euclidean time limit of an appropriately con-
structed ratio of the three-point function to two-point functions, in which time dependencies of the
time evolution and overlaps of the initial trial state and the nucleon state cancel. Since this opti-
mized sink, involving momentum in all spatial directions, coincides with the one calculated for the
electromagnetic currentno new sequential inversions are required for the axial vector current. The
same holds for the pseudoscalar current and the N to∆ optimized sinks. As indicated in Eq. (3.1),
we use kinematics where the final nucleon is produced at rest and therefore the momentum transfer
q = p′−p =−p. We take−q2 = Q2 > 0 with Q2 being the Euclidean momentum transfer squared.

# confs κ or aml mπ (GeV) MN (GeV) M∆ (GeV)

Quenched 323×64 a−1 = 2.14(6) GeV

200 0.1554 0.563(4) 1.267(11) 1.470(15)
200 0.1558 0.490(4) 1.190(13) 1.425(16)
200 0.1562 0.411(4) 1.109(13) 1.382(19)

κc =0.1571 0. 0.938(9)

Unquenched Wilson 243×40 [7] a−1 = 2.56(10) GeV

185 0.1575 0.691(8) 1.485(18) 1.687(15)
157 0.1580 0.509(8) 1.280(26) 1.559(19)

Unquenched Wilson 243×32 [8] a−1 = 2.56(10) GeV

200 0.15825 0.384(8) 1.083(18) 1.395(18)
κc = 0.1585 0. 0.938(33)

MILC 203×64 a−1 = 1.58 GeV

200 0.03 0.594(1) 1.416(20) 1.683(22)
198 0.02 0.498(3) 1.261(17) 1.589(35)
100 0.01 0.362(5) 1.139(25) 1.488(71)

MILC 283×64 a−1 = 1.58 GeV

150 0.01 0.357(2) 1.210(24) 1.514(41)

Table 1: The number of configurations, the hopping parameter,κ , for the case of Wilson fermions or the
mass of the light quarks,ml , for the MILC staggered quarks, and the pion, nucleon and∆ masses.
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In Table I we collect the parameters for our calculation. In the so called hybrid approach,
that uses staggered sea quarks and domain wall valence quarks, we have noO(a) artifacts, unlike
Wilson fermions where cutoff effects areO(a). We use the same parameters for the domain wall
operator as those used in Ref. [9], namely we take the length of the fifth dimension,L5/a = 16 and
the valence quark mass that is tuned to reproduce the pion mass calculated withthe staggered quark
action. Finite volume effects can be assessed by comparing results at the lowest pion mass. It was
shown [1] that results on the 203 spatial volume were consistent with the results on the 283 lattice.
The source-sink separation is optimized so that, on the one hand, it is sufficiently large to ensure
ground state dominance and, on the other, small enough so that gauge noise is kept at a minimum.
In all cases, we use the non-perturbatively determined value for the axial renormalization constant,
ZA. Note that the pseudoscalar renormalization constant is not needed for the quantities under
consideration here.

4. Results

We first consider the ratiosGπN∆(Q2)/GπNN(Q2) and 2CA
5 (Q2)/GA(Q2). We note that, in

the ratioGπN∆(Q2)/GπNN(Q2), the renormalized quark mass cancels eliminating one source of
systematic error.

Figure 1: The ratio of form factors
GπN∆(Q2)/GπNN(Q2) as a function of Q2

for Wilson fermions for the quenched theory,
denoted byNF = 0, and for two dynamical Wilson
quarks, denoted byNF = 2.

Figure 2: The ratio of 2CA
5 (Q2)/GA(Q2) as a func-

tion of Q2. The notation is the same as that of
Fig. 1.

As can be seen in Figs. 1 and 2, these ratios show weak dependence on the quark mass and
are therefore more suited for comparison with physical results. Both theseratios areQ2 inde-
pendent and can be thus fitted to a constant. Fitting the quenched data, whichcarry the small-
est statistical errors, we obtain the value of 1.60(2) shown by the dashedline. Taking the ratio
of the diagonal and non-diagonal GTRsmNGA = fπGπNN and 2mNCA

5 = fπGπN∆, we find that
GπN∆(Q2)/GπNN(Q2) = 2CA

5 (Q2)/GA(Q2). In Fig. 2, we show the ratio 2CA
5 (Q2)/GA(Q2), which

is indeed alsoQ2 independent, and fitting to the quenched data we find the value of 1.63(1) shown

5
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by the dashed line. They are also approximately equal in the unquenched case [1]. Therefore, on
the level of ratios, the GTRs are satisfied.

Figure 3: GA(Q2) (upper) andGp(Q2)(lower) for
the quenched theory and for two dynamical Wilson
fermions. Results in the hybrid approach are from [9].

Figure 4: CA
5 (Q2) (upper) andCA

6 (Q2) (lower)
for Wilson fermions and in the hybrid approach.

In Fig. 3, we show our results for the nucleon axial form factors using Wilson fermions. We
also include recent results obtained in the hybrid approach [9] using similarparameters to those
used in our evaluation of the N to∆ axial form factors. The main observation is that, at the smallest
domain wall quark mass, results in the hybrid approach deviate from quenched results. In partic-
ular, we note that the value of the nucleon axial chargegA becomes larger in the hybrid scheme
approaching the experimental value. The dotted line shows the dipole fit to theexperimental data.
As can be seen, lattice results fall off slower than experiment. However, the large deviations ob-
served at lowQ2 for a pion mass of about 360 MeV point to large pion cloud effects, which tend to
increase the form factors at smallQ2. The solid line is a dipole fit of the quenchedGA(Q2) at a pion
mass of 411 MeV, yielding an axial massMA = 1.58(3) GeV. We note that a fit to an exponential of
the formg̃0exp(−Q2/m̃2

A), also describes the lattice data, yielding a curve that is indistinguishable
from the dipole fit.

Very similar behavior is observed for the transition form factorCA
5 (Q2) shown in Fig. 4, where

a dipole fit, shown with the solid line, provides a good description of the lattice results. Again the
axial mass obtained by fitting the quenched results at the lowest mass is largerthan the value of
1.28(10) GeV extracted from available experimental results [10]. A fit to an exponential form also
provides a good fit to the lattice data.

Having fittedGA(Q2) andCA
5 (Q2), theQ2-dependence for the form factorsGp(Q2) andCA

6 (Q2)

can be obtained using pion-pole dominance. The resulting curves are shown by the dashed lines in
Figs. 3 and 4 for the quenched theory at the lowest pion mass and show deviations at lowQ2. The
dotted line is the corresponding result in the hybrid approach at the smallestpion mass. In addition

6
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we show curves that are obtained using
Gp(Q2)

GA(Q2)
=

g0

(Q2/m2 +1)
(4.1)

with a corresponding expression forCA
6 (Q2)/CA

5 (Q2), whereg0 andm are treated as fit parameters.
As expected, this provides a good description of theQ2-dependence forGp(Q2) andCA

6 (Q2) as
shown by the solid lines, which correspond to the fits of the quenched data at the lowest pion mass.

5. Conclusions

We present results for the nucleon axial vector form factorsGA(Q2) andGp(Q2), as well as
for the corresponding N to∆ axial transition form factorsCA

5 (Q2) andCA
6 (Q2). TheπNN andπN∆

form factorsGπNN(Q2) andGπN∆(Q2) are also evaluated. One of the main conclusions is thatGπNN

and GπN∆ have the sameQ2 dependence yielding a ratio ofGπN∆(Q2)/GπNN(Q2) = 1.60(2) in
good agreement with what is expected phenomenologically. The ratio 2CA

5 (Q2)/GA(Q2) = 1.63(1)

is also independent ofQ2. Equality of these two ratios implies the Goldberger-Treiman relations.
We also studied theQ2-dependence of the form factors separately. Comparing quenched and un-
quenched results at pion mass of about 360 MeV, we observe large unquenching effects on the low
Q2-dependence of the four form factors,GA(Q2), GP(Q2), CA

5 (Q2) andCA
6 (Q2). This confirms the

expectation that pion cloud effects are expected to be large at lowQ2. Further study of pion cloud
effects using lighter quark masses on a finer lattice is called for.
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