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1. Introduction

Twisted mass (TM) fermions have great potential in extending lattice QCD calculations to
smaller quark masses. However, their disconnected loop properties are not well explored. We have
done a number of calculations of quenched TM quark-loop properties, using real Z(2) noises and
the efficient GMRES-DR/GMRES-Proj inversion algorithms [1, 2], concentrating on the scalar-
pseudoscalar sector, to determine their mixing patterns and other properties. In particular, we are
interested in whether it is possible to identify “maximal twist" from such properties.

We consider the case of a degenerate doublet ψ of up (u) and down (d) quarks. In the twisted
basis, the doublet ψ̂ is given by:

ψ̂ = e−
i
2 ωγ5τ3ψ, ˆ̄ψ = ψ̄e−

i
2 ωγ5τ3 , ψ =

(
u
d

)
, (1.1)

where ω is the twist angle and τ3 is the third Pauli matrix. The bare operators in the twisted and
physical basis are therefore related to one other as

V̂ a
µ = cos(ω)V a

µ − ε
3ab sin(ω)Ab

µ , V̂ 3
µ = V 3

µ , (1.2)

Âa
µ = cos(ω)Aa

µ − ε
3ab sin(ω)V b

µ , Â3
µ = A3

µ , (1.3)

Ŝ0 = cos(ω)S0−2isin(ω)P3, (1.4)

2P̂3 = 2cos(ω)P3− isin(ω)S0, (1.5)

P̂a = Pa. (1.6)

where a,b = 1,2 (isospin indices) in these equations and the twisted operators are on the left hand
side. V , A, S, and P represent vector, axial-vector, scalar and pseudoscalar operators, respectively.
Some operators are the same in the physical and twisted basis while others are mixtures of physical
operators with opposite parity.

In the following, we will consider the vacuum expectation values (VEVs) of scalar (Ŝ0) and
pseudoscalar (P̂3) TM loop operators. We define M̃−1

u ≡ M−1
u − (1 + 2iµκγ5)−1, and call it the

“hopping parameter subtracted" propagator for the “up" quark. (µ → −µ gives “down".) The
traces of the subtracted and unsubtracted scalar and pseudoscalar operators are then related as

Tr[M−1
u ] = Tr[M̃−1

u ]+
12

(1+4κ2µ2)
, (1.7)

Tr[γ5M−1
u ] = Tr[γ5M̃−1

u ]− 24iκµ

(1+4κ2µ2)
. (1.8)

M̃−1
u or M̃−1

d are the quantities actually used in the following. We then have, using the identity
M̃−1

u = γ5(M̃−1
d )†γ5,

< (Ŝ0)un >≡ Tr[M̃−1
u + M̃−1

d ] = 2Re(Tr[M̃−1
u ]), (1.9)

< (P̂3)un >≡ 1
2

Tr[γ5M̃−1
u − γ5M̃−1

d ] = iIm(Tr[γ5M̃−1
u ]), (1.10)

where < .. . > denotes a VEV and “un" means unrenormalized, so that one need only calculate the
real or imaginary parts of the appropriate up quark operators.
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Renormalization constants are expected. For the VEVs in the neutral scalar/pseudoscalar sec-
tor, one has [3]

< (Ŝ0)un >= cos(ω)(< ψ̄ψ >un +2a−3Cs(0))−2a−3Cs(ω), (1.11)

2 < (P̂3)un >=−isin(ω)
Zs

Zp
(< ψ̄ψ >un +2a−3Cs(0))+2ia−3Cp(ω). (1.12)

In the above a is the lattice spacing. In addition, Zs and Cs(ω) are the scalar multiplicative and
twist-dependent additive renormalization constants, and Zp and Cp(ω) are similar quantities for
the pseudoscalar sector. According to Eqs.(1.11) and (1.12) there should be an oscillation in the
VEV of the scalar or pseudoscalar as a function of twist angle, ω .

In the following we will make use of the linear correlation coefficient in order to understand
the mixings of the operators. Given quark-loop operators O1 and O2, the correlation coefficient, r
(−1 < r < 1), has the standard form:

r =
< O1O2 >−< O1 >< O2 >√

< (O1−< O1 >)2 >< (O2−< O2 >)2 >
. (1.13)

Physically, this represents the product of disconnected amplitudes.

2. Search for maximal twist in the scalar/pseudoscalar sector

Figure 1: Shows our search lines in κ , µ space.

We conducted a search in parameter space to look for the oscillations in Eqs.(1.11) and (1.12)
in order to identify maximal twist (ω =±π/2) points in the µ , κ plane as well as to understand the
mixing patterns of the scalar and pseudoscalar operators. As characterized in Fig. 1 and explained
below, we investigated both along κ = 0.15739 and along another line, κ = 0.15679. Our quenched
lattices are of size 203×32 with β = 6.0.

There are a number of definitions of maximal twist, the most viable being the parity defi-
nition [4] and the PCAC definition [5]. The parity definition examines the charged vector/axial-
vector sector, and finds that maximal twist occurs on a line in the κ , µ plane. On the other hand,
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Figure 2: A scan across the hopping parameter subtracted VEVs of the twisted scalar operator as a function
of the TM parameter, µ , for κ = 0.15679. Fit described in the text.

the PCAC defintion extrapolates the value of κc obtained from the PCAC relation at non-vanishing
bare twisted quark mass µ to µ = 0. The points at maximal twist defined by this approach lie along
a given, fixed κ value.

At κ = 0.15679, Ref. [4] has found that µ = 0.03, a point of maximal twist, approximates the
strange quark mass. We decided to investigate the twisted scalar and pseudoscalar VEVs along this
κ value. Note that the connected scalar and pseudoscalar operators are known to mix when eval-
uated at maximal twist in the connected vector/axial-vector sector [6], implying that the maximal
twist lines in these two sectors are probably different.

Our value for the PCAC twist line, κ = 0.15739, was determined from a linear extrapolation
to µ = 0 of the 4 κ , µ pairs given in Ref. [4] which follow the parity definition of maximal twist.
This value is close to the value 0.157409 found in Ref. [7] for similar lattices at β = 6.0. Note
that the κc value from the standard Wilson vanishing of the pion mass occurs at κc = 0.15691 [8].
Thus, the two investigated values for κ bracket the critical Wilson value; see Fig. 1. Therefore, at
µ = 0 the κ = 0.15679 value is in the standard Wilson phase with small quark mass, whereas the
κ = 0.15739 value is in the spontaneous parity-breaking phase known as the Aoki phase [9].

3. Observations and conclusions

Fig. 2 shows the hopping parameter subtracted VEV (per unit volume) of the twisted scalar
operator as a function of µ (κ = 0.15679). As pointed out above, there should be an oscillation
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Figure 3: A scan across the hopping parameter subtracted VEVs of the twisted pseudoscalar operator as a
function of the TM parameter, µ , for κ = 0.15679. Fit described in the text.

in the VEV of the scalar or pseudoscalar as a function of twist angle, ω , as one scans at fixed
κ; one is then changing ω in some non-linear fashion. Indeed, there seems to be a very small
oscillation (a twist!) in < (Ŝ0)un > as a function of µ . However, the inflection point at µ ≈ 0.044
is not at the maximal twist point found in the vector, axial-vector case [4]. The fit of the data
shown is qualitatively useful (χ2 /(degree of freedom) ≈ 4.5) but needs improvement. It assumes
the twist angle is directly proportional to µ , which is surely wrong, so the fit can almost certainly
be improved. The fit is given as

A+Bµ +C cos(
πµ

2D
), (3.1)

where A, B, C, D are constants. We found A = −1.094, B = −0.3301, C = −0.002845, and
D = 0.04372. It is this last value that tells us we have an inflection point near µ = 0.044.

Fig. 3 gives the similar VEV of the twisted pseudoscalar operator as a function of µ (κ =
0.15679). Unlike the scalar case it is fit well without the need for an oscillatory term; see Eq.(1.12)
for < (P̂3)un >. The fit we found is actually quite reasonable (χ2 /(degree of freedom) ≈ 1.7) and
is given by

Eµ +Fµ
2 +G tan−1(Hµ), (3.2)

where we obtained E =−2.931, F = 2.438, G =−0.008412, and H = 164.1.
Although we do not show the figures here, we also investigated scalar and pseudoscalar oper-

ators along the PCAC maximal twist line, κ = 0.15739. We have much less data here than in the
previous case, and we do not examine the question of whether oscillatory portions of these func-
tions exist. There is an apparent discontinuity of the scalar and pseudoscalar VEVs at µ = 0, and
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Figure 4: Linear correlation coefficient, r, of twisted scalar/pseudoscalar operators in a scan across µ values
for κ = 0.15679.

we can no longer fit them with the same functional form used for the smaller κ value. As pointed
out above, µ = 0 is actually in the Aoki phase.

To examine the question of the parity of these operators at general µ , we calculate the linear
correlation coefficient, r, between twisted scalar and pseudoscalar operators from Eq.(1.13). Fig. 4
shows the linear correlation coefficient, r, for κ = 0.15679 as a function of µ . This correlation
coefficient can be zero only if the parity of the operators is different. The twisted operators are
seen to be mixed for all examined values of µ . The blue symbols in Fig. 4 are values near the
parity maximal twist point at µ = 0.03. The results along the PCAC line, as given in Fig. 5, show
a similar pattern. The point at µ = 0 now has a non-zero value for r; it is in the Aoki spontaneous
parity breaking phase. In Fig. 4 we were able to break the lattice up into two independent statistical
parts in order to increase the statistics. It is a “half-time average". On the other hand, in Fig. 5 it
was necessary to treat the entire lattice volume for each configuration as a single data point in the
correlation calculation. It is an “all-time average".

We have also calculated r between Wilson (κ = 0.15679, µ = 0) scalar and pseudoscalar
operators and similar twisted operators also at κ = 0.15679; these 4 graphs are not shown. The
Wilson operators have a known parity. The calculation shows that scalar and pseudoscalar TM loop
operators have a non-zero overlap only with Wilson scalar operators.

The conclusion is then that the VEV of the scalar operator, < (Ŝ0)un >, seems to be consistent
with Eq.(1.11), but that there is no evidence the pseudoscalar VEV, < (P̂3)un >, contains a sin(ω)
oscillatory term as in Eq. (1.12). In addition, both scalar and pseudoscalar TM loop operators,
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Figure 5: Linear correlation coefficient, r, of twisted scalar/pseudoscalar operators in a scan across µ values
for κ = 0.15739 (PCAC case). The µ = 0 point is in the Aoki phase.

(Ŝ0)un and (P̂3)un, are mixed at all µ , and appear to be purely scalar in character.
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