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Fπ by monitoring how just one single Dirac operator eigenvalue splits into two when subjected
to two different external vector sources. Because we choose imaginary chemical potentials our
Dirac eigenvalues remain real. Based on the relevant chiral Random Two-Matrix Theory we
derive individual eigenvalue distributions in terms of density correlations functions to leading
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individual Dirac eigenvalue distributions and their correlations can be computed directly from the
effective chiral Lagrangian.
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Fπ from Dirac eigenvalues at imaginary density G. Akemann

1. Introduction

The distribution of individual Dirac operator eigenvalues have become a popular tool since
their calculation [1] in the chiral Random Matrix Theory that is equivalent to the leading-order ex-
pression for the QCD partition function in the ε-regime [2]. The analytical expressions distinguish
very clearly between different gauge theories and different sectors of topology, as first shown in
[3]. This has by now been verified by many different groups using different versions of fermions
with different levels of chiral symmetry on the lattice. It has also become clear how to derive the
same expression in the ε-regime of chiral perturbations theory (εχPT) [4].

Individual eigenvalue distributions provide perhaps the most efficient tool to extract one of
the low energy constants (LEC) in χPT, the infinite-volume chiral condensate Σ. Here we extend
this analysis to the second LEC in line, the pion decay constant Fπ , exploiting the fact that a
nonvanishing chemical potential µ couples to Fπ to leading order in the ε-expansion [5]. This
method has been first suggested for imaginary isospin chemical potential with two different sets
of Dirac eigenvalues [6]. The advantage over real µ [7] is that the Dirac operator retains its anti-
hermiticity, allowing for unquenched simulations without encountering any sign-problems, and
with greatly reduced computer efforts associated with the computation of the lowest eigenvalues.
The proposal [6] was based on the 2-point spectral correlation function computed from εχPT and
verified their prediction on quenched and unquenched Lattice data. This was generalised in [8]
where all spectral correlations where computed analytically from the shown equivalence with a
corresponding chiral Random two-Matrix Theory (chR2MT) with µ1,2. The advantage here is
that partial quenching is possible, by setting one of the µ j to zero. Hence existing configurations
with µ = 0 can be used to measure Fπ . This idea was most recently applied to unquenched chiral
fermions in [9]. Here we present first results for individual Dirac eigenvalue distributions.

In section 2 we introduce the chR2MT and its corresponding εχPT. Section 3 presents our
results in a general setting, which is then illustrated pictorially in the simplest case, the quenched
isospin densities in section 4. Section 5 gives our conclusions and comments on other results.

2. RMT and χPT with imaginary chemical potential

We start by defining the chR2MT for imaginary chemical potentials introduced and solved in
[8]

ZchR2MT ∼
∫

dΦdΨ exp
[
−NTr

(
Φ†Φ + Ψ†Ψ

)] N f

∏
f =1

det[D(µ f ) + m f ] . (2.1)

The anti-hermitian Dirac matrix D is given in terms of two complex, rectangular random matrices
Φ and Ψ of size N× (N + ν) with Gaussian measure:

D(µ f ) =

(
0 iΦ + iµ f Ψ

iΦ† + iµ f Ψ† 0

)
. (2.2)

Here ν corresponds to fixed gauge field topology in the usual way. In the following we restrict our-
selves to the case of only two different chemical potentials, D(µ1,2)≡D1,2, with N1,2 flavours each.
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Referring to ref. [8] for details, we can write down the corresponding eigenvalue representation:

ZchR2MT =
∫ ∞

0

N

∏
i

(
dxidyi(xiyi)

ν+1
N1

∏
f 1=1

(x2
i + m2

f 1)
N2

∏
f 2=1

(y2
i + m2

f 2)

)

× ∆N({x2})∆N({y2})det [Iν(2dNxiy j)]e−N ∑i c1x2
i +c2y2

i , (2.3)

where xi and yi are real positive eigenvalues of the matrices Φ + µ1,2Ψ, respectively. The constants
c1,2 and d depend on µ1,2 (see [8]). For later convenience we abbreviate the integrand or joint
probability distribution function (jpdf) by P({x},{y}).

If we take the large-N limit and identify Nxi → V Σxi ≡ x̂, Nm f 1→ V Σm f 1 ≡ m̂ f 1, 2Nµ2
1 →

V F2
π µ2

1 ≡ µ̂2
1 , and similarly for the second set N2, the partition function eq. (2.3) becomes identical

to the corresponding εχPT partition function [8]

ZχPT =

∫
dU(N f )det[U ]ν exp

[
Tr

1
4

µ2F2
π V [U,B][U†,B] +

1
2

VΣM f (U +U†)

]
. (2.4)

Fπ and Σ have as source terms chemical potential through the charge matrix B =diag(µ11N1 ,µ21N2),
and the diagonal mass matrix M f =diag({m f 1},{m f 2}), respectively. For explicit results for these
partition functions we refer to [8].

3. Results for individual Dirac eigenvalue distributions

In the following we first define all density correlations, all individual eigenvalues correlations
(or gap probabilities), and then express the latter in terms of the former. This inversion relation
is valid for any theory expressed in terms of Dirac eigenvalues, having a jpdf P({x},{y}) that is
symmetric under exchange of all xi and all yi eigenvalues separately. This applies to our chR2MT
eq. (2.3), its equivalent εχPT, or a Lattice QCD partition functions in terms of Dirac eigenvalues.

All density correlation functions are defined by integrating all but k(l) eigenvalues of D1(D2)

Rk,l(x1, . . . ,xk, y1, . . . ,yl) ≡
N!2

(N− k)!(N− l)!Z

∫ ∞

0

N

∏
i=k+1

dxi

N

∏
j=l+1

dy jP({x},{y}) . (3.1)

The simplest nontrivial example is the probability density R1,1(x,y) for finding an eigenvalue of
D1 at x and of D2 at y. If all eigenvalues of one kind are integrated out one finds back the known
quantities of the one-matrix theory at µ = 0 [8]. Next we define the following gap probabilities
that the interval [0,s] is occupied by k eigenvalues and [s,∞) by (N−k) eigenvalues of D1, and that
the interval [0, t] is occupied by l eigenvalues and [t,∞) by (N− l) eigenvalues of D2:

Ek,l(s, t) ≡ N!2

(N− k)!(N− l!)Z

∫ s

0
dx1 . . .dxk

∫ ∞

s
dxk+1 . . .dxN

∫ t

0
dx1 . . .dxl

∫ ∞

t
dyl+1 . . .dyN

×P({x},{y}) , for k, l = 0,1, . . . ,N . (3.2)

The simplest example is E0,0(s, t) to find the intervals [0,s] and [0, t] empty of D1- and D2-eigenvalues,
respectively. Similarly we can define the probability to find the k-th D1-eigenvalue at value xk = s,
and the l-th D2-eigenvalue at value yl = t, to be

pk,l(s, t) ≡ k
(

N
k

)
l
(

N
l

)
1
Z

∫ s

0
dx1 . . .dxk−1

∫ ∞

s
dxk+1 . . .dxN

∫ t

0
dy1 . . .dyl−1

∫ ∞

t
dyl+1 . . .dyN

×P(x1, . . . ,xk−1,xk = s,xk+1, . . . ,xN ,y1, . . . ,yl−1,yl = t,xl+1, . . . ,yN) , (3.3)
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where the eigenvalues are ordered x1 ≤ . . . ≤ xN and y1 ≤ . . . ≤ yN . The simplest example is
p1,1(s, t), the distribution of each first eigenvalue. It is easy to see [10] that all the quantities eq.
(3.3) can be obtained from eq. (3.2) by taking two derivatives,

∂ 2

∂ s∂t
Ek,l(s, t) = k! l!(pk,l(s, t)− pk+1,l(s, t)− pk+1,l(s, t) + pk+1,l+1(s, t)) . (3.4)

Here, we define pk,l = 0 whenever index k or l is zero. Finally we give an inversion formula ex-
pressing all gap probabilities, and hence all individual eigenvalue distributions in terms of densities:

Ek,l(s, t) =
N−k

∑
i=0

N−l

∑
j=0

(−)i+ j

i! j!

∫ s

0
dx1 . . .dxk+i

∫ t

0
dy1 . . .dyl+ jR(k+i,l+ j)(x1, . . . ,xk+i, y1, . . . ,yl+ j).

(3.5)
The derivation [10] follows closely the µ = 0 case [4]. Since it is known how to generate all higher
density correlations Rk,l from resolvents by inserting additional, auxiliary pairs of fermions and
bosons e.g. into eq. (2.4), this relation clarifies how to generate individual eigenvalue distributions
in this setting from field theory.

4. Examples

We discuss in detail the simplest example, the probability p1,1(s, t). It follows from the gap
probability using eq. (3.4):

∂ 2

∂ s∂ t
E0,0(s, t) = p1,1(s, t) . (4.1)

We expand E0,0(s, t) to include at most 3-point density correlations as an approximation,

E0,0(s, t) = 1−
∫ s

0
dxR1,0(x)−

∫ t

0
dyR0,1(y) +

∫ s

0
dx
∫ t

0
dyR1,1(x,y)

+
1
2

∫ t

0
dy1dy2 R0,2(y1,y2) +

1
2

∫ s

0
dx1dx2 R2,0(x1,x2)

−1
2

∫ s

0
dx1dx2

∫ t

0
dyR2,1(x1,x2,y)− 1

2

∫ s

0
dx
∫ t

0
dy1dy2 R1,2(x,y1,y2) + . . . (4.2)

The derivatives eliminate all integrals over one-matrix densities that only depend on s or t:

p1,1(s, t) = R1,1(s, t) −
∫ s

0
dxR2,1(x,s, t) −

∫ t

0
dyR1,2(s, t,y) + . . . . (4.3)

The leading order term is obviously given by the density R1,1(s, t), as can be clearly seen in figs. 1
and 3. There, we display the quenched density in the case of imaginary isospin chemical potential
µ1 =−µ2 ≡−µ . In the microscopic large-N limit ρ1,1(x̂, ŷ) = limN→∞ R1,1(x = x̂/N,y = ŷ/N) we
obtain the following result [6, 8]

ρ(1,1)(x̂, ŷ) = ρ(1,0)(x̂)ρ(0,1)(ŷ)− x̂ŷK +(ŷ, x̂)

(
K −(x̂, ŷ)− 1

4µ̂2 Iν

(
x̂ŷ

4µ̂2

)
e
− x̂2+ŷ2

8µ̂2

)

K ±(x̂, ŷ) ≡
∫ 1

0
dtt e±2µ̂2t2

Jν(x̂t)Jν(ŷt) , K 0(x̂, ŷ)≡
∫ 1

0
dtt Jν(x̂t)Jν(ŷt) . (4.4)
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Figure 1: Example quenched density R1,1(s, t) (top left) vs individual eigenvalue distribution p1,1(s, t) (top
right) at ν = 0 and 2µ̂ = 0.159. The lower plots show corresponding 2D cuts at fixed s = 2.

Here also the well known one-matrix density appears,

ρ(1,0)(x̂) = ρ(0,1)(x̂) =
x̂
2
[
J2

ν(x̂)− Jν+1(x̂)Jν−1(x̂)
]

= K 0(x̂, x̂) , (4.5)

see fig. 2. Eq. (4.4) was derived independently for the chR2MT eq. (2.3) [8] and prior to that for
εχPT eq. (2.4) using replicas and the Toda-lattice hierarchy [6]. It is displayed in figs. 1 and 3
left for topological charge ν = 0 and 1, respectively, including 2-dimensional cuts. Because the
density is the expectation value R1,1(x,y) ∼ 〈 Trδ (D1− x) Trδ (D2− y) 〉, µ 6= 0 resolves the delta
function δ (x− y) that we would obtain at µ = 0, times the one-matrix density eq. (4.5) that we
give for comparison.

Next we move to individual eigenvalues. A closed determinantal expression for all higher
density correlation functions in terms of the same building blocks as in eq. (4.4) was given in [8]:

ρk,l({x̂},{ŷ}) =
k

∏
i

xi

l

∏
j

y j det


 K 0(x̂i1 , x̂i2 ) K −(x̂i1 , ŷ j2)− 1

4µ̂2 Iν

(
x̂i1 ŷ j2
4µ̂2

)
e
−

x̂2
i1

+ŷ2
j2

8µ̂2

K +(ŷ j1 , x̂i2 ) K 0(ŷ j1 , x̂ j2)


 . (4.6)

We can insert these formulas into the expansion eq. (4.3), after taking the microscopic limit. The
result truncated at the given order is plotted in figs. 1 and 3 right. The fact that the truncated sum
is an approximation is seen from the fact that the individual eigenvalue density becomes negative
(or diverges when adding higher order terms). For the given values in the figs. this happens above
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Figure 2: The one-matrix density ρ(1,0)(x̂) vs. the exact distribution of the first eigenvalue for ν = 0 :

p1(x̂) = 1
2 x̂ e−

1
4 x̂2

(left), and for ν = 1 : p1(x̂) = 1
2 x̂ e−

1
4 x̂2

I2(x̂) (right).

s = t ≈ 4, and we have cut the 3D plots at values below−0.15. Higher order terms in the expansion
eq. (3.5) will keep the individual eigenvalue distribution to be zero for larger values of s and t. From
our experience with the case µ = 0 [4] we expect that this expansion converges fast. The next to
leading order used in the figures gives already a reasonably good approximation.
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Figure 3: Same as fig. 1. for ν = 1. The exact zero eigenvalues push the density away from the origin.
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5. Conclusions and outlook

We have shown how to derive individual eigenvalues distributions pk,l for two sets of real Dirac
operators with different imaginary chemical potentials µ1,2. Similar expressions have been derived
for a single Dirac operator with complex eigenvalues at real µ and compared to Lattice data [11].
Both types of µ couple to Fπ and thus allow to fully determine all LECs in the leading order χPT
Lagrangian. But only imaginary µ with real Dirac eigenvalues allow to date to perform unquenched
or partially quenched simulations. The equivalence of εχPT to the chR2MT we mentioned here
for the density and partition function has been derived very recently for all correlators [12].

We have given an effective expansion for the distributions pkl by truncating the sum over
integrated densities, as was illustrated in our examples. The possibility to derive exact expressions
(which is possible for real µ) is currently under investigation [10]. Our hope is that the results
presented here will become as useful as previously for µ = 0.

Acknowledgments

This work was supported by EPSRC grant EP/D031613/1 (G.A.) and EU network ENRAGE
MRTN-CT-2004-005616.

References

[1] S. M. Nishigaki, P. H. Damgaard and T. Wettig, Phys. Rev. D58 (1998) 087704 [hep-th/9803007];
P. H. Damgaard and S. M. Nishigaki, Phys. Rev. D63 (2001) 045012 [hep-th/0006111].

[2] E. V. Shuryak and J. J. M. Verbaarschot, Nucl. Phys. A560 (1993) 306 [hep-th/9212088].

[3] R.G. Edwards , Urs M. Heller, Joe Kiskis and Rajamani Narayanan, Phys. Rev. Lett. 82 (1999) 4188
[hep-th/9902117].

[4] G. Akemann and P. H. Damgaard, Phys. Lett. B583 (2004) 199 [hep-th/0311171].

[5] D. Toublan and J.J.M. Verbaarschot, Nucl. Phys. B603 (2001) 343 [hep-th/0012144].

[6] P. H. Damgaard, U. M. Heller, K. Splittorff and B. Svetitsky, Phys. Rev. D 72 (2005) 091501
[hep-lat/0508029]; P. H. Damgaard, U. M. Heller, K. Splittorff, B. Svetitsky and D. Toublan, Phys.
Rev. D 73 (2006) 074023 [hep-lat/0602030]; Phys. Rev. D 73 (2006) 105016 [hep-th/0604054].

[7] G. Akemann and T. Wettig, Phys. Rev. Lett. 92 (2004) 102002; Erratum-ibid. 96 (2006) 029902
[hep-lat/0308003]; J. C. Osborn and T. Wettig, PoS (LAT2005) 200 [hep-lat/0510115].

[8] G. Akemann, P. H. Damgaard, J. C. Osborn and K. Splittorff, Nucl. Phys. B766 (2007) 34
[hep-th/0609059].

[9] T. DeGrand, S. Schaefer, arXiv:0708.1731v1 [hep-lat] (see also in these proceedings).

[10] G. Akemann and P. H. Damgaard, unpublished, 2007.

[11] G. Akemann, J. Bloch L. Shifrin and T. Wettig, PoS(Lattice2007)224, these proceedings.

[12] F. Basile, G. Akemann, arXiv:0710.0376v1 [hep-th].

7


