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The three-dimensional compact U(1) LGT is studied at finite temperature. In particular, correla-
tion functions of the Polyakov loops and the ’t Hooft operator are computed perturbatively at high
temperatures. Performing dimensional reduction the effective two-dimensional model is obtained
which describes vortex–anti-vortex dynamics in the high-temperature regime. We explore this
effective model to study in details the critical behaviour which is expected to be of the BKT type.
Under the standard assumptions we compute critical indices and compare them with those of the
two-dimensional XY model.
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1. Introduction

The main motivation to investigate the pure gauge compact three-dimensional (3d) U(1) LGT
is two-fold. At zero temperature the theory has a nonvanishing mass gap and a string tension at
arbitrarily small coupling constant. This is a feature expected from 4d QCD. At finite temper-
atures the theory undergoes a deconfinement phase transition. The corresponding phenomenon
takes place in 4d QCD as well. It thus appears that the 3d U(1) gauge theory constitutes one of
the simplest models with continuous gauge symmetry which possesses the same fundamental prop-
erties as QCD. Therefore, it is very important to understand in great details a mechanism which
underlies the permanent confinement and deconfinement phase transition on the simpler example
of three-dimensional abelian model.

First investigations of U(1) LGT at finite temperature have been performed by Polyakov [1]
and Susskind [2]. Their analysis, done for strong coupled Hamiltonian version of 4d model, showed
the possibility of the deconfinement phase transition at high temperatures. 3d theory was studied
by Parga using Lagrangian formulation of the theory [3]. The picture emerging from this study can
be described as follows. At high temperatures the system becomes effectively two-dimensional,
in particular the monopoles of the original U(1) gauge theory become vortices of the 2d system.
The partition function turns out to coincide (in the leading order of the high-temperature expan-
sion) with the 2d XY model in the Villain representation. The XY model is known to have the
Berezinskii-Kosterlitz-Thouless (BKT) phase transition of the infinite order [4, 5] (a rigorous proof
of the BKT phase transition existence was done in [6]). According to the Svetitsky-Yaffe conjec-
ture the finite-temperature phase transition in the 3d U(1) LGT should belong to the universality
class of the 2d XY model [7]. This means, firstly that the global U(1) symmetry cannot be broken
spontaneously because of the Mermin-Wagner theorem [8] and, consequently the absence of the
local order parameter. Secondly, the correlation function of the Polyakov loops (which become
spins of the XY model) decreases with the power law at β ≥ βc implying a logarithmic potential
between heavy electrons

P(R) � 1
Rη(T ) , (1.1)

where the R� 1 is the distance between test charges. The critical index η(T ) is known from the
renormalization-group analysis of Ref.[5] and equals η(Tc) = 1/4 at the critical point of the BKT
transition. For β < βc, t = βc/β −1 one has

P(R) � exp [−R/ξ (t)] , (1.2)

where the correlation length ξ ∼ ebt−ν

and the critical index ν = 1/2. Therefore, the critical indices
η and ν should be the same in the finite-temperature U(1) model if the Svetitsky-Yaffe conjecture
holds in this case. The numerical check of these predictions was performed on the lattices N2

s ×Nt

with Ns = 16,32 and Nt = 4,6,8 in [9]. Though authors of [9] confirm the expected BKT nature of
the phase transition, the reported critical index is almost three times larger of that predicted for the
XY model, η ≈ 0.78.

Thus, so far there is no numerical indications that critical indices of 3d U(1) LGT coincide
with those of the 2d XY model. Analytical calculations have been performed in the leading order of
the high-temperature expansion only. In finite-temperature simulations the scaling was not reached.
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The problem can be in the finite-size effects. In the XY model, due to logarithmic corrections, in
order to reliably determine critical indices one should use the FSS technics and/or simulate the
model on large thermodynamic lattices, i.e. L� ξ .

In what follows we concentrate on the studying of the universality problem. In the next section
we introduce our conventions and give definition of the compact version of U(1) LGT together with
some expectation values. Investigation of the model at limiting values of anisotropic couplings is
presented in the Section 3. In this limit the BKT critical behaviour is clearly seen. The perturbative
calculations of the Polyakov loop correlations and the ’t Hooft operator at high temperatures are
the subject of the Section 4. In the Section 5 we derive the effective vortex model and give an
analytical predictions for the critical indices of the theory. A summary of our results is presented
in the Section 6.

2. Lattice conventions and definition of the model

We work on a 3d lattice Λ = L2 ×Nt with spatial extension L and temporal extension Nt .
Periodic boundary conditions on gauge fields are imposed in all directions. In what follows we
keep notations of the original lattice also for the dual lattice. Introduce anisotropic dimensionless
couplings in a standard way as

βt =
1

g2at
, βs =

ξ

g2as
= βt ξ

2 , (2.1)

where at (as) is lattice spacing in the time (space) direction and ξ = at
as

is a ratio of lattice spacings.
g2 is a continuum coupling constant with dimension a−1.

3d U(1) gauge theory on the anisotropic lattice is defined through its partition function as

Z ≡ Z(Λ;βt ,βs) =
∫ 2π

0
∏

l

dωl

2π
exp[βs ∑

ps

cosω(ps)+βt ∑
pt

cosω(pt)] , (2.2)

and the plaquette angles ω(p) are defined in a standard way. In the following we shall also need the
plaquette and dual formulations of the model (2.2). The plaquette formulation on the dual lattice
can be easily obtained from the corresponding formulation on the isotropic lattice [10, 11] and
takes the form

Z =
∫ 2π

0
∏

l

dωl

2π
exp

[
βs ∑

lt

cosω(lt)+βt ∑
ls

cosω(ls)

]
∏

x
J(x), (2.3)

where J(x) is the periodic delta-function which expresses the lattice Bianchi identity

J(x) =
∞

∑
r=−∞

eirωx , ωx = ∑
n

[ωn(x)−ωn(x− en)] . (2.4)

Integration over plaquette (dual link) variables leads to the corresponding dual representation of
the anisotropic model. The Villain formulation of 3D U(1) gauge theory on the anisotropic lattice
can be deduced from last formulae. In particular, the dual formulation reads

Z =
∞

∑
r(x)=−∞

exp

[
−∑

x

2

∑
n=0

1
2βn

(r(x)− r(x+ en))2

]
. (2.5)
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Clearly, the representations (2.3)-(2.5) can be viewed as the dimensional continuations of the link
and dual representations of the 2d XY model [12, 13, 14].

The correlation function of Polyakov loops in representation j can be written in the dual for-
mulation as a ratio of partition functions

Pj(R) =

〈
exp

[
i j

Nt−1

∑
x0=0

(ω0(x)−ω0(R))

]〉
=

Z j

Z0
, (2.6)

where Z0 = Z and

Z j =
∞

∑
r(x)=−∞

∏
x

2

∏
n=0

Ir(x)−r(x+en)+ηn(x)(βn) . (2.7)

Here we have introduced sources ηn(x) = η(l) as

η(l) =


j, l ∈ Sd , l = (x,n)

− j, l ∈ Sd , l = (x− en,n)

0, otherwise

(2.8)

where Sd is a surface enclosed between two Polyakov loops.
The standard ’t Hooft operator which measures a free energy of the monopole-antimonopole

pair is given in the dual formulation by the following expectation value

D(x,y) =
〈
(−1)r(x)−r(y)

〉
. (2.9)

3. Limiting values of anisotropic couplings

We start by examining the limiting values of the anisotropic couplings.
1. The limit βt = 0. This is the simplest limit because here the model reduces to a product of

non-interacting two-dimensional gauge models. The solution of 2d gauge models is well known.
For U(1) LGT we thus get

Z(βt = 0,βs) =

[
∞

∑
r=−∞

IL2

r (βs)

]Nt

. (3.1)

The model is in the confined phase at all values of βs. The temporal Wilson loop, the Polyakov
loop and all the correlations of the Polyakov loops are vanishing in the limit βt = 0. The spatial
Wilson loop in the thermodynamic limit behaves as

Wj(C) = exp [−αS] , α = ln
I0(βs)
I j(βs)

, (3.2)

where S is the area of the loop C.
2. The limit βs = 0. This is a non-trivial limit which cannot be solved exactly but in which the

U(1) model reduces to the XY -like model. Integrating out spatial gauge fields one can prove that

Z(βt ,βs = 0) =
∫ 2π

0
∏

x

dωx

2π
∏
x,n

[
∞

∑
r=−∞

INt
r (βt) exp [ir(ωx−ωx+en)]

]
. (3.3)
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Here, eirωx is the Polyakov loop in the representation r.
For Nt = 1 using the formula ∑r Ir(x)eirω = excosω one finds

Z(βt ,βs = 0,Nt = 1) =
∫ 2π

0
∏

x

dωx

2π
exp

[
βt ∑

x,n
cos(ωx−ωx+en)

]
(3.4)

which is the partition function of the XY model. Thus, in this case the dynamics of the system is
governed by the XY model with the inverse temperature βt . For Nt ≥ 2 the model (3.3) is of the
XY -type, i.e. it describes the interaction between the nearest neighbour spins (Polyakov loops) and
possesses the global U(1) symmetry. There is a little doubt that the critical behaviour for all Nt is
the same as that of the XY model.

4. Perturbative calculation of the Polyakov loop correlator at high temperatures

Perturbative calculations for abelian models are especially simple in the plaquette formulation
(2.3). The perturbation theory on isotropic lattice in the plaquette formulation has been developed
in [11]. In that paper, a calculation of the first two perturbative coefficients of the Wilson loop can
be found. An extension of those calculations to the anisotropic lattice is straightforward. For the
Polyakov loop we write the result in the form

Pj(C) = 1−g2 C1 +g4 C2 + O(g6) , (4.1)

C1 =
1
2

j2
β D(R) , C2 =

1
8

j4
β

2 D2(R) − 1
4

j2 atβ D(R)
(
1−β

−1
t Dn1

)
. (4.2)

Here, D(R) = G(0)−G(R) � O(lnR) is the two-dimensional Green function appearing in (4.4)
and Dn1 = G0−Gn1 . At high temperatures β

−1
t Dn1 ≈ (2Nt)−1. Substituting last formulae into (4.1)

one can extract the potential between test charges

Vj(R) = − 1
β

lnPj(R) =
1
2

g2 j2
[

1+
1

2βt
(1−β

−1
t Dn1)

]
D(R) . (4.3)

These formulae are to be compared with the perturbative expansion of the two-point correlation
function of the 2d XY model. If g2 is a dimensionless coupling constant of the XY model then the
perturbative expansion takes the form [14, 15]

ΓXY (R) = 1 − g2

2
D(R) +

g4

8
D(R) [D(R)−1] + O(g6) . (4.4)

Comparing (4.4) with (4.2) one sees the perturbative coefficients of the Polyakov loop behave
qualitatively and quantitatively similar to those of the 2-point function of the 2d XY model.

Now we present perturbative results for the ’t Hooft loop. From (2.9) one can easily calculate
the leading perturbative contribution

D(R) = exp
[
−1

2
B(R)

]
. (4.5)

At high temperature and for R = (x2
1 + x2

2)
1/2 � 1, τ = 0

B(R,0) =
1

πg2β
lnR . (4.6)
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At high temperature and for R = 0

B(0,τ) =
β

g2a2
s

(
τ

β

)
, τ = atx0 . (4.7)

These results agree qualitatively with numerical simulations of [16]. Also, this behaviour is quali-
tatively similar to the behaviour of the disorder operator in the XY model.

5. Effective vortex model and critical behaviour

Here we calculate the effective vortex model at finite temperatures using the Villain version
of the theory (2.5). Simple computations lead to familiar result Z = ZswZmon, where Zsw is
the standard spin-wave contribution. The monopole contribution, which describes the standard
Coulomb interaction mGm between dynamical monopoles, reads

Zmon =
∞

∑
m(x)=−∞

exp

[
−π

2
∑
x,x′

m(x)Gxx′m(x′)

]
. (5.1)

Here and below the sums over all repeating indices are understood. The Green function Gx on the
anisotropic lattice can be written as (k0 + k1 + k2 6= 0)

Gx =
1
L2

L−1

∑
kn=0

1
Nt

Nt−1

∑
k0=0

exp
[

2πi
L ∑

2
n=1 knxn + 2πi

Nt
k0x0

]
1
βs

(
1− cos 2πk0

Nt

)
+ 1

βt
∑

2
n=1

(
1− cos 2πkn

L

) . (5.2)

Now we study the effective monopole theory (5.1). We follow the conventional strategy de-
veloped in the context of the XY model and described in many reviews and books. The first step is
to substitute the full Green function by its asymptotics at high temperatures which can be derived
from Eq.(5.2)

Gx =
1

g2β
G2d

x +
β

g2a2
s

B2(τ/β )δx,0 +
β 3

6g2a4
s

B4(τ/β )∆x +O(β 5) , (5.3)

where τ = atx0, G2d
x is the Green function of the 2d model, ∆x is the Laplace operator and Bn(z)

are the Bernoulli polynomials. Using this expansion one finds in the leading order τ/β � 1 the
effective 2d vortex model, x = (x1,x2)

Zvor =
∞

∑
m(x)=−∞

δ

[
∑
x

m(x)
]

exp

[
− π2

g2β
∑
x,x′

m(x)Gxx′m(x′)−κ0 ∑
x

m2(x)−κ1m(x)∆xx′m(x′)

]
,

(5.4)

κ0 = κ
π2β

6g2a2
s

, κ1 = κ
π2β 3

180g2a4
s

. (5.5)

This vortex model can be exactly mapped onto the model of the sine-Gordon type

ZSG =
∫

∏
x

dαx exp

[
−∑

x,x′
αxBxx′αx′ + y∑

x
cosαx

]
,Bxx′ =

g2β

4π
∆xx′ +κ

g2β 5

720a4
s

∆xy∆yy′∆y′x′ ,(5.6)

where ∆xy is the lattice Laplace operator and effective fugacity of the XY model is y = 2exp[− γπ2

g2β
+

κ
π2β

6g2a2
s
]. The sine-Gordon model can be analyzed by the conventional RG methods [17]. Terms

proportional to κ are treated perturbatively. We skip these well-known calculations which predict
the XY critical indices η(Tc) = 1/4 and ν = 1/2 also for our effective vortex theory.
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6. Summary

At zero temperature 3d U(1) compact gauge theory exhibits permanent confinement at all val-
ues of coupling constant. At finite temperature a deconfinement phase transition takes place to a
phase where the potential between test charges grows logarithmically. This is seen, e.g. from the
behaviour of the correlation function of the Polyakov loops which have been computed perturba-
tively at high temperature. In the limit βs = 0 this is the BKT phase transition which belongs to
the XY model universality class. At large values of βs we have computed effective static model for
monopoles and studied it at high temperature. Assuming validity of the conventional RG methods
we have obtained analytical predictions for the critical indices of the model. Our result implies
that these indices coincide with those of the XY model at all values of couplings. Nevertheless,
since this result relies on certain approximations the numerical check is very desirable. Such MC
simulations are now in progress.

This work was supported in part by the Program “Fundamental Properties of Physical Systems
under Extreme Conditions” of the Bureau of the Section of Physics and Astronomy of the National
Academy of Sciences of Ukraine.
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