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1. The sign problem and the phase of the fermionic determinant

The QCD partition function with two flavours of quarks (or eight flavours of staggered quarks),
which are given the same chemical potential µ , is:

Z(µ,µ) ≡
∫

DUe−SG[U ](detM[U,µ])2

=
∫

DUe−SG[U ]|detM[U,µ]|2ei2θ , (1.1)

where θ is the phase of the complex determinant. When µ 6= 0 then θ 6= 0 and Monte Carlo
simulations are not feasible: this is the notorious sign problem.Various possibilities have been
explored to circumvent the problem, like reweighting techniques [1, 2, 3], the use of an imaginary
chemical potential either for analytic continuation [4, 5, 6, 7, 8, 9, 10] or for reconstructing the
canonical partition function [11, 12, 13], Taylor expansion techniques [14, 15] and non-relativistic
expansions [16, 17, 18].

If the two flavours have opposite chemical potentials, the problem is solved because detM[U,−µ] =

detM[U,µ]∗, and:

Z(µ,−µ) =
∫

DUe−SG[U ]|detM[U,µ]|2 . (1.2)

An indicator of the severness of the sign problem ( [20, 21]) is 〈ei2θ 〉. When 〈ei2θ 〉 ∼ 0 the problem
is relevant and there is a significant difference between finite isospin density simulations and finite
baryon density ones. It’s easy to see that:

〈ei2θ 〉µ ≡

〈

detM(µ)

detM(−µ)

〉

(µ,−µ)

=
Z(µ,µ)

Z(µ,−µ)
. (1.3)

Recently it has been proposed [20, 21] to study the analytic continuation of the average phase factor
to imaginary chemical potentials:

〈ei2θ 〉iµ ≡

〈

detM(iµ)

detM(−iµ)

〉

(iµ,−iµ)

=
Z(iµ, iµ)

Z(iµ,−iµ)

=

∫

DUe−SG[U ] detM[U, iµ]detM[U, iµ]
∫

DUe−SG[U ] detM[U, iµ]detM[U,−iµ]
(1.4)

Notice that in Eq. (1.4) both partition functions are suitable for numerical simulations because
detM[U,±iµ] is real. In the present work we propose and test new strategies for an efficient
numerical determination of 〈ei2θ 〉 which fully exploit the fact of working at imaginary values of µ .

2. The method

In evaluating 〈ei2θ 〉iµ , there are some numerical difficulties. First, fermionic determinants
are very expensive to calculate; second, the statistical distributions generated by Z(iµ, iµ) and
Z(iµ,−iµ) could have poor overlap. Similar problems happen in the evaluation of disorder param-
eters in lattice gauge theories; in this case, powerful techniques have been developed [22, 23, 24,
25, 26, 27]. We have introduced two methods to overcome these problems [28].
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2.1 Derivatives method

It is useful to define:

Rµ(ν) =
Z(iµ, iν)

Z(iµ,−iµ)
(2.1)

where Rµ(µ) is the ratio we want to evaluate and Rµ(−µ) = 1. The partition function Z(iµ, iν)

in Eq. (2.1) is suitable for numerical Monte Carlo simulations for generic values of iµ, iν . It is
obvious that:

ρ(ν) ≡
d

dν
lnRµ(ν) =

d
dν

lnZ(iµ, iν)

=

〈

i Tr
(

M−1(iν)
d

d(iν)
M(iν)

)〉

(iµ,iν)

. (2.2)

The trace in equation (2.2) is the number (imaginary) of quark coupled to the chemical potential
iν : it can be computed easily by an unbiased noisy estimator. The average phase factor is then

〈ei2θ 〉iµ = exp
(

∫ µ

−µ
ρ(ν)dν

)

(2.3)

i.e. it can be obtained without any determinant calculation. In practice we compute the derivative
ρ(ν) for a discrete set of ν and then we integrate them numerically. In principle it is also possible
to determine further derivatives of ρ in order to improve the computation accuracy.

2.2 Factorization method

We rewrite the average phase factor as a product of intermediate ratios:

〈ei2θ 〉iµ =
Z(iµ, iµ)

Z(iµ,−iµ)
=

ZN

ZN−1

ZN−1

ZN−2
. . .

Z1

Z0
≡

N

∏
k=1

rk (2.4)

where ZN ≡ Z(iµ, iµ), Z0 ≡ Z(iµ,−iµ) while

Zk≡
∫

DUe−SG[U ]detM[U, iµ]detM[U, i(−µ + kδν)] (2.5)

with δν = 2µ/N. We compute each single ratio rk which is not affected by overlap problems. We
note that:

rk = 〈detM(i(ν +δν))/detM(iν)〉(iµ,iν)

= 〈exp(TrlnA(ν ,δν))〉(iµ,iν) (2.6)

where ν = −µ +(k−1)δν and

A[U,ν ,δν ] ≡ M[U, iν ]−1M[U, i(ν +δν)] . (2.7)

The calculation of each rk is easy: for large N (and small δν), A[U,ν ,δν ] is very close to the
identity matrix Id, for each configuration U . So we can expand the logarithm obtaining:

rk '

〈

exp
(

Tr(A− Id)−
1
2

Tr(A− Id)2 + . . .

)〉

(2.8)
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Figure 1: ρ(ν) for various values of µ at β =

4.8 and Ls = 4.
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Figure 2: ρ(ν) for various values of µ at β =

4.6 and Ls = 4.

Each trace is evaluated by a noisy estimator as follows:

Tr(A[U ]− Id)n '
1
K

K

∑
j=1

η ( j)†(A[U ]− Id)nη ( j) (2.9)

where η ( j) is a random vector satisfying 〈η ( j)†
i1 η ( j)

i2 〉η = δi1,i2 and K is sufficently large; in our
simulations we always use K = 30 and we adopt a third order expansion for the logarithm.

3. Numerical Results

We have tested our methods for the theory with 8 staggered flavors of mass am = 0.1 and we
will present results obtained on L3

s ×Lt lattices with Lt = 4 and Ls = 4,8,16. At µ = 0 the theory
presents a strong first order deconfinement/chiral transition for βc ∼= 4.7 and Lt = 4. On the smallest
lattice (Ls = 4) we will compare our results directly with those obtained at real isospin chemical
potential, by a direct evualuation of the determinant phase based on LU factorization. Numerical
simulations have been performed mostly on the APEmille facility in Pisa; the INFN apeNEXT
facility in Rome has been used for the results on the largest lattice. We have adopted the standard
exact HMC algorithm with trajectories of length 1. A full account of our results is reported in
Ref. [28].

In table (1) we put the average phase factor continued to imaginary values of µ for various
parameter sets and computation methods. In the fourth column we put data obtained with deriva-
tives method DER(N) or with factorization method RAT(N). Finally on the smallest lattices also
a direct determination of the expectation value in Eq. (1.4) is reported for comparison (direct). It
is clear that, with a comparable numerical effort, the derivative method furnishes more accurate
determinations. We have therefore chosen this method for most of our analysis.

In figures (1), (2) and (3) we show ρ(ν), for various µ β and LS. It is apparent that ρ(ν) is
always a very smooth function, so that the systematic errors involved in its numerical integration,
hence in the determination of 〈ei2θ 〉iµ through equation (2.3), are negligible.

The average phase factor computed at finite isospin chemical potential, at variance with that
computed in the quenched theory, is expected to be an analytic function of µ 2 around µ2 = 0. We
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Figure 3: ρ(ν) for various values of µ at β = 4.8 and Ls = 16.
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Figure 4: 〈ei2θ 〉 computed for different values
of µ2 at β = 4.8 and β = 4.6 on a 44 lattice.
Best fit quadratic and quartic functions in µ2

are displayed, showing good validity of ana-
lytic continuation.
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Figure 5: 〈ei2θ 〉iµ as a function of the spatial
lattice size Ls for two values of iµ . A best
fit according to 1 + C Lγ

s is reported in both
cases.We obtain γ ≈ 2.5 for both values of µ .
Therefore the numerical effort scales in an af-
fordable way with the lattice size.

have tested analytic continuation by comparing our results with direct determinations of 〈ei2θ 〉iµ

performed at real chemical potentials: this has been done only for the smallest lattice (Ls = 4),
where the second determination is easily affordable. In our biggest range of values we have:

〈ei2θ 〉 = 1+Aµ2 +Bµ4 (3.1)

as shown in the figure (4). We obtain, at β = 4.8, A =−4.48(8), B = 15.7±2.5 and χ 2/d.o.f.' 1.3.
Analyticity around µ2 = 0 is therefore well verified.

We have also performed numerical simulations at different values of Ls in order to test both the
behaviour of 〈ei2θ 〉 and the efficiency of our method as the lattice volume is increased. In Fig. (5)
we report determinations performed at fixed values of iµ and variable Ls at β = 4.8. A behaviour

〈ei2θ 〉 = 1+CLγ
s (3.2)

well describes the data with γ ∼ 2.5 for both values of iµ . From the data in table 1 we also learn
that the numerical effort scales in an affordable way with the lattice size Ls: to obtain comparable
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uncertainties (of the order of 10 %) for (〈ei2θ 〉− 1), on the largest lattice (163 × 4) we needed a
CPU time which is less than one order of magnitude bigger than what needed on the smallest lattice
(44).

4. Conclusions

We have presented two techniques for an efficient numerical determination of the average
phase factor of the fermionic determinant continued to imaginary values of the chemical potential
and we have applied both methods to QCD with 8 dynamical staggered flavors. In our simulations
we have verified the absence of uncontrolled systematic effects and performed a comparison of the
efficiencies, with the conclusion that the method based on the integration of the imaginary part of
the baryon density, Eq. (2.3), is numerically more convenient.

We have also directly tested, on small lattices, the analiticity of the average phase factor around
µ2 = 0. The method proposed and tested in the present paper will be used to perform more exten-
sive studies, with more physical quark masses and number of flavors, of the average phase factor
continued to imaginary chemical potential.

Ls β Im(µ) method 〈ei2θ 〉iµ HMC trajs

4 4.8 0.025 DER(10) 1.00322(42) 700k
4 4.8 0.025 RAT(5) 1.0030(18) 150k
4 4.8 0.025 RAT(10) 1.0028(11) 300k
4 4.8 0.025 direct 1.0033(11) 40k
4 4.8 0.05 DER(20) 1.0108(11) 800k
4 4.8 0.05 RAT(10) 1.0122(16) 500k
4 4.8 0.075 DER(15) 1.0266(17) 350k
4 4.8 0.10 DER(20) 1.0454(16) 700k
4 4.8 0.20 DER(16) 1.283(8) 700k
8 4.8 0.025 DER(10) 1.0164(19) 150k
8 4.8 0.025 RAT(5) 1.0200(50) 50k

16 4.8 0.025 DER(10) 1.0732(85) 60k
16 4.8 0.025 RAT(5) 1.053(33) 40k
16 4.8 0.05 DER(10) 1.368(30) 40k
4 4.6 0.025 DER(5) 1.0061(10) 200k
4 4.6 0.05 DER(10) 1.0270(15) 350k

Table 1: Determinations of the average phase factor continued to imaginary µ’s for various parameters and
computation methods. In the fourth column we report the method used to obtain the determination: DER(N)
stands for the integration of the first derivative ρ determined on (N+1) points, Eq. (2.3); RAT(N) stands for
the evaluation of N intermediate ratios rk, Eq. (2.4). On the smallest lattices also a direct determination of
the expectation value in Eq. (1.4) is reported for comparison.
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