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We propose a method to probe the nature of phase transitions in lattice QCD at finite temperature

and density, which is based on the investigation of an effective potential as a function of the av-

erage plaquette. We analyze data obtained in a simulation oftwo-flavor QCD using p4-improved

staggered quarks with bare quark massm=T = 0:4, and find that a first order phase transition line

appears in the high density regime forµq=T >� 2:5. The effective potential as a function of the

quark number density is also studied. We calculate the chemical potential as a function of the

density from the canonical partition function and discuss the existence of the first order phase

transition line.
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1. Effective potential as a function of the average plaquette

The study of the QCD phase diagram at non-zero temperature(T ) and chemical potential(µq) is one of the most important topics among studies of lattice QCD. In particular, the study of
the endpoint of the first order phase transition line in the(T;µq) plane is particularly interesting
both from the experimental and theoretical point of view. The existence of such a critical point
is suggested by phenomenological studies. The appearance of the critical endpoint in the(T;µq)
plane is closely related to hadronic fluctuations in heavy ion collisions and may be experimentally
examined by an event-by-event analysis of heavy ion collisions. Many trials have been made to
prove the existence of the critical endpoint by first principle calculation in lattice QCD, however
no definite conclusion on this issue is obtained so far. The purpose of this study is to clarify the
existence of the endpoint of the first order phase transitionline in the(T;µq) plane. We propose a
new method to investigate the nature of transition.

We evaluate an effective potential as a function of the average plaquette(P) 1, and identify the
type of transition from the shape of the potential. The partition function can be written as2ZGC(β ;µq) = Z DU (detM(µq))Nf e�Sg(P;β) = Z

R(P;µq)w(P)e�Sg(P;β) dP; (1.1)

whereSg(P;β ) is the gauge action,w(P) is the state density atµq = 0 for eachP,

w(P0)e�Sg(P0;β) � w(P0;β )� Z DU δ (P0�P) (detM)Nf e6βNsiteP; (1.2)

andR(P;µq) is the modification (reweighting) factor for finiteµq, which is defined by

R(P0;µq)� R DU δ (P0�P)(detM(µq))NfR DU δ (P0�P)(detM(0))Nf
= D

δ (P0�P)(detM(µq)=detM(0))Nf
E(β ;µq=0)hδ (P0�P)i(β ;µq=0) ;(1.3)

whereh� � �i(β ;µq=0) means the expectation value atµq = 0, detM is the quark determinant,Nf is
the number of flavors3 , andNsite = N3

s �Nt is the number of sites. We then define the effective
potential asV (P;β ;µq) = � ln(Rwe�Sg). If there is a first order phase transition point, where two
different states coexist, the potential must have two minima at two different values ofP. In this
paper, we discuss whether the potential atµq = 0, i.e. ln(we�Sg), which is quadratic function when
the transition is a crossover, can change to a double-well potential by the reweighting factor for
finite µq, as illustrated in Fig. 1 (left).

2. Taylor expansion in terms of µq=T and Gaussian distribution

However, the calculation of the quark determinant is quite expensive and is actually difficult
except on small lattices. Moreover, the calculation ofR(P;µq) becomes increasingly more difficult

1For later discussions, we define the average plaquetteP asP��Sg=(6βNsite). This is the average of the plaquette
over all elementary squares for the standard gauge action.

2We restrict ourselves to discuss only the case when the quarkmatrix does not depend onβ explicitly, e.g. the
standard Wilson and staggered quark actions, the p4-improved staggered quark action etc., for simplicity.

3Nf must be replaced in these equations toNf=4 when we use a staggered type quark action.
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Figure 1: (left) Schematic figures of the effective potential and the reweighting factor. (right) The histogram
of the complex phase forµq=T = 1:0 and 2:0 atβ = 3:65.

for largeµq due to the sign problem, i.e. the statistical error becomes exponentially larger asµq

increases. We avoid these problems by the following two ideas. One is that we perform a Taylor
expansion of lndetM(µq) in terms ofµq at µq = 0 and calculate the expansion coefficients [1],

ln

�
detM(µq)
detM(0) �= ∞

∑
n=1

1
n!

�
∂ n(lndetM)
∂ (µq=T )n

��µq

T

�n � N3
s Nt

∞

∑
n=1

Dn

�µq

T

�n : (2.1)

The Taylor expansion coefficients are rather easy to calculate by using the stochastic noise method.
Although we must cut off this expansion at an appropriate order in µq, we can estimate the appli-
cation range where the approximation is valid for each analysis [2, 3]. While the application range
of the Taylor expansion of lnZGC should be limited by the critical point because lnZGC is singular
at the critical point, there is no such limit for the application range in the expansion of lnR(P;µq)
because the weight factor should always be well-defined.

The sign problem is avoided by the following idea. We consider a probability distribution func-
tion as a function of the complex phase of the quark determinant θ , jF j � jdetM(µq)=detM(0)jNf

and P, i.e. w̄(P; jF j;θ). If we assume the distribution function inθ is well-approximated by a
Gaussian function, the sign problem in the calculation of lnR(P;µq) is completely solved [4].

We define the complex phase by a Taylor expansion,θ = NfN3
s Nt ∑∞

n=0 ImD2n+1(µq=T )2n+1.
Since the partition function is real even at non-zero density, the distribution function has the
symmetry under the change fromθ to �θ . Therefore, the distribution function is written by
w̄(θ) � exp[�(a2θ2 + a4θ4 + a6θ6 + � � �)℄: Moreover, becauseDn is a trace of a matrix which
has space index [3], e.g.D1 ∝ tr[M�1dM=d(µq=T )℄, the central limit theorem suggests that the
distribution function is well-approximated by a Gaussian function, when the system size is suffi-
ciently large in comparison to the correlation length between diagonal elements of the matrix. We
plotted the distribution of the complex phase in Fig. 1 (right) and fitted by a Gaussian function
(dashed line). It is found that this approximation is quite well, hence we consider the leading term
of the expansion only, ¯w(P; jFj;θ) ∝

p
a2(P; jFj)=π exp[�a2(P; jFj)θ2℄: The coefficienta2(P; jFj)
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Figure 2: (left) The plaquette histogram and the effective potentialat µq = 0. (right) The reweighting factor
lnR(P;µq) for µq=T = 0:5�2:5.

is given by 1=(2a2) = 
θ2
�

for eachP andjF j. The numerator of Eq. (1.3) is then evaluated by

F(µq)δ (P0�P)�(β ;µq=0) � De�1=(4a2(P;jF j))jF(µq)jδ (P0�P)E(β ;µq=0) : (2.2)

Because 1=a2 � O(Nsite), the phase factor inR(P;µa) decreases exponentially as a function of the
volume. However, the operator in Eq. (2.2) is always real andpositive for each configuration in this
framework, hence the expectation value ofR(P;µq) is always larger than its statistical error, namely
the contribution lnR(P;µq) to the effective potentialV (P;β ;µq) is always well-defined. Therefore,
the sign problem is completely avoided if we can assume the Gaussian distribution ofθ .

3. Numerical results of the effective potential

We calculatew(P;β ) andR(P;µq) using data obtained by simulations in [3]. The Taylor expan-
sion coefficients are computed up toO(µ6

q ). These are measured at sixteen simulation points from
β = 3:52 to 4:00 for the bare quark massma = 0:1. The corresponding temperature normalized by
the pseudo-critical temperature is in the range ofT=Tc = 0:76 to 1:98. The ratio of pseudo-scalar
and vector meson masses ismPS=mV � 0:7 atβ = 3:65. The lattice sizeNsite is 163�4. The number
of configurations is 1000 – 4000 for eachβ .

The probability distribution functionw(P;β ), i.e. the histogram ofP for eachβ , and the
effective potentialV (P;β ) at µq = 0 are given in Fig. 2(left). To obtainw(P;β ), we grouped the
configurations by the value ofP into blocks and counted the number of configurations in these
blocks, and the potentialV (P;β ) is normalized by the minimum value for each temperature.

The results for lnR(P;µq) are shown by solid lines in Fig. 2 (right) forµq=T = 0:5;1:0;1:5;2:0
and 2:5. We find a rapid change in lnR aroundP� 0:83, and the variation becomes larger asµq=T
increases. The dashed lines in Fig. 2 (right) are the resultsthat we obtained when the effect of the
complex phase, i.e. exp[�1=(4a2)℄, is omitted. These dashed lines correspond to the reweighting
factor with non-zero isospin chemical potentialµI and zero quark chemical potentialµq [5]. The
variation of lnR in terms ofP becomes milder when the effect of the complex phase is omitted.
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Figure 3: The slope (left) and curvature (right) of lnR(P;µq). The dashed line is the curvature of� lnw.

This explains the difference between the phase diagrams of QCD with non-zero quark chemical
potential and non-zero isospin chemical potential [4].

We discuss the shape of the effective potential at non-zeroµq. The effective potential is ob-
tained fromV (P;β ;µq) =� lnw(P;β )� lnR(P;µq) substituting the data in Fig. 2. From Eq. (1.2),
the slope ofV (P;β ;µq) can be controlled byβ ,

V (P;β ;µq) =V (P;β0;µq)�6(β �β0)NsiteP: (3.1)

under a change ofβ0! β , however the curvature of the potential does not change byβ . We expect
that the curvature vanishes at the endpoint of the first orderphase transition line by canceling
d2(lnw)=dP2 andd2(lnR)=dP2. In order to analyze the sign ofd2V=dP2(P;µq), we fitted the data
of lnR by a quadratic function ofP and calculate the first and second derivatives of lnR(P;µq) at
eachP. The results of the slope and curvature are shown in Fig. 3 foreachµq=T . In the region
aroundP � 0:83, d(lnR)=dP becomes larger asµq=T increases and lnR(P;µq) changes sharply in
this region. The magnitude of the curvature of lnR also becomes larger asµq=T increases.

To evaluated2(lnw)=dP2(P), we assumew(P;β ) in Fig. 2 (left) is a Gaussian function. In this
case, the curvature athPi is given by�d2(lnw)=dP2 = 6Nsite=χP; whereχP � 6Nsiteh(P�hPi)2i
is the plaquette susceptibility. The dashed line in Fig. 3 (right) is the result of�d2(lnw)=dP2(P).

It is found from Fig. 3 (right) that the maximum value ofd2(lnR)=dP2(P;µq) at P = 0:80
becomes larger than�d2(lnw)=dP2 for µq=T >� 2:5. This means that the curvature of the effective
potential vanishes atµq=T � 2:5 and becomes negative for largeµq=T , namely the shape of the
effective potential which is of quadratic type atµq = 0 changes to a double-well type at large
µq=T . For the quantitative estimation of the endpoint of the firstorder phase transition, further
investigation must be needed. However, this argument strongly suggests the existence of the first
order phase transition line in the(T;µq) plane. Further details of this analysis are given in [4].

4. Canonical partition function

Next, we want to apply the effective potential argument to the weight factor as a function of
the quark number densityρ . The physical meaning of this potential is clearer than thatof P because
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Figure 4: The chemical potential as a function of the quark number density.

the weight factor for each quark numberN corresponds to the canonical partition functionZC,ZGC(T;µq) =∑
N

eNµq=TZC(T;N); N = ρ̄N3
s ; ρ=T 3 = ρ̄N3

t : (4.1)

The canonical partition function can be given by an inverse Laplace transformation [6, 7, 8],ZC(T;N) = 3
2π

Z π=3�π=3
d(µI=T )e�N(µ0=T+iµI=T )ZGC(T;µ0+ iµI); (4.2)

whereµ0 is an appropriate real constant. Note thatZGC(T;µq +2πiT=3) =ZGC(T;µq). Recently,
this canonical partition function is calculated forNf = 4 using the Glasgow method [9]. However,
with present day computer resources, the calculation by theGlasgow method is difficult except on
small lattices. We consider approximations which is valid for large volume and low density in this
approach, as discussed in the first part of this paper.

We calculate the grand partition function by the Taylor expansion, Eq. (2.1),ZGC(T;µq)ZGC(T;0) = 1ZGC

Z DU

�
detM(µq)
detM(0) �Nf (detM(0))Nf e�Sg � De[Nf NtV ∑∞

n=1 Dn( µq
T )n℄E(T;µq=0);(4.3)

whereV � N3
s . We moreover use a saddle point approximation, which is valid for a large sys-

tem. We find a saddle pointz0 in the complexµq=T plane for each configuration, which satisfies�
NfNt ∑∞

n=1nDnzn�1� ρ̄
�

z=z0
= 0. The canonical partition function is given byZC(T; ρ̄V )� 3p

2π
ZGC(T;0)*exp

"
V

 
NfNt

∞

∑
n=1

Dnzn
0� ρ̄z0

!#
e�iα=2

s
1

V jD00(z0)j+(T;µ=0)(4.4)

for largeV . Here,D00(z) = (d2=dz2)(NfNt ∑∞
n=1Dnzn) andD00(z0) = jD00(z0)jeiα .

The chemical potential, i.e. the slope of the effective potential, is also evaluated by

µq

T
= �1

V
∂ lnZC(T; ρ̄V )

∂ ρ̄
� Dz0 exp[V (NfNt ∑∞

n=1Dnzn
0� ρ̄z0)℄e� iα

2

q
1

V jD00(z0)jE(T;µq=0)D
exp
�
V
�
NfNt ∑∞

n=1 Dnzn
0� ρ̄z0

��
e� iα

2

q
1

V jD00(z0)jE(T;µq=0) : (4.5)
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This equation is similar to the formula of the reweighting method for finiteµq. The operator in
the denominator corresponds to a reweighting factor, and the chemical potential is an expectation
value of the saddle point calculated with this modification factor.

We analyze the data used in the previous section. The Taylor expansion coefficients up to
O(µ6

q ) are used. The volumeV = 163 would be sufficiently large, and we assume a Gaussian
distribution function for the complex phase of the reweighting factor, again. We find a saddle point
z0 numerically for each configuration, assumingz0 exists near the real axis in the low density region
of the complexµq=T plane. We use multi-β reweighting method [10] combining all data obtained
at 16 points ofβ . Configurations are generated with the provability of the Boltzmann weight in
Monte-Carlo simulations, however the important configurations will change when the weight is
changed by the reweighting method. For such a case, the multi-β reweighting is effective, since the
important configurations are automatically selected amongall configurations generated at multi-β ,
and also this method is useful for the interpolation betweenthe simulation points.

We plot the result ofµq=T in Fig. 4 as a function ofρ=T 3 for each temperature. The dot-
dashed line is the value in the free gas limit. As seen in Fig. 2(left), the configurations do not
distribute uniformly in the range ofP which is necessary in this analysis, and correct results cannot
be obtained if the important configurations are missing. At low temperature, the important value
of P changes very much asρ increases, therefore we plotted only the data when the expectation
value ofP is on the peaks of the histograms ofP in Fig. 2 (left). The dashed lines are cubic spline
interpolations of these data.

It is found from this figure that a qualitative feature ofµq=T changes aroundT=Tc � 0:8, i.e.
µq=T increases monotonically asρ increases above 0.8, whereas it shows an s-shape below 0.8.
This means that there is more than one values ofρ=T 3 for one value ofµq=T below T=Tc � 0:8.
This is a signature of a first order phase transition. The critical value ofµq=T is about 2:5, which is
consistent with the result in the previous section. Although further studies including justifications
of these approximations used in this analysis are necessaryfor more qualitative investigation, this
result also suggests the existence of the first order phase transition line in the(T;µq) plane.
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