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1. Effective potential asa function of the average plaquette

The study of the QCD phase diagram at non-zero tempergfurend chemical potential
(Hg) is one of the most important topics among studies of lattiGDQIn particular, the study of
the endpoint of the first order phase transition line in fhguy) plane is particularly interesting
both from the experimental and theoretical point of view.e Hxistence of such a critical point
is suggested by phenomenological studies. The appearatice aritical endpoint in theT, pq)
plane is closely related to hadronic fluctuations in heawydollisions and may be experimentally
examined by an event-by-event analysis of heavy ion colisi Many trials have been made to
prove the existence of the critical endpoint by first priheipalculation in lattice QCD, however
no definite conclusion on this issue is obtained so far. Thipgae of this study is to clarify the
existence of the endpoint of the first order phase transiii@nin the (T, L) plane. We propose a
new method to investigate the nature of transition.

We evaluate an effective potential as a function of the ayepaquettéP) 1, and identify the
type of transition from the shape of the potential. The fartifunction can be written &

oo B pig) = / U (detM (p1g)) ¥ &SP — / R(P, pig)w(P)e~S(PB) dp, (L.1)
where§(P, B) is the gauge actiorw(P) is the state density aiy = 0 for eachP,
w(P)e SFA) =w(P,B) = / U (P —P) (detM)NBPNsieP, (1.2)
andR(P, ) is the modification (reweighting) factor for finijg,, which is defined by

[9U 8P - Pydemugy (O —P)(deM(ug)/deO))
R(P', tg) = T9U &(P — P)(detM(0))™ = (5(P — P)>(l3,uq:0) (1.3)

where(.--) (g ,—0) Means the expectation value jat = 0, detM is the quark determinant is

the number of flavors , andNgjie = N_f‘ x N; is the number of sites. We then define the effective
potential as/ (P, B, Ug) = — In(Rwe=%). If there is a first order phase transition point, where two
different states coexist, the potential must have two manahtwo different values dP. In this
paper, we discuss whether the potentiglgt= 0, i.e. In\we~9), which is quadratic function when
the transition is a crossover, can change to a double-wé&dintial by the reweighting factor for
finite Ly, as illustrated in Fig. 1 (left).

2. Taylor expansion in termsof L/T and Gaussian distribution

However, the calculation of the quark determinant is quigeasive and is actually difficult
except on small lattices. Moreover, the calculatioR@®, 1i4) becomes increasingly more difficult

IFor later discussions, we define the average plaqieisP = —S/(6BNsite). This is the average of the plaquette
over all elementary squares for the standard gauge action.

2We restrict ourselves to discuss only the case when the quatiix does not depend g explicitly, e.g. the
standard Wilson and staggered quark actions, the p4-iredrstaggered quark action etc., for simplicity.

3Nf must be replaced in these equationdlip4 when we use a staggered type quark action.
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Figure1: (left) Schematic figures of the effective potential and #weeighting factor. (right) The histogram
of the complex phase fqiy/T = 1.0 and 20 at3 = 3.65.

for large Ly due to the sign problem, i.e. the statistical error becompsreentially larger agiq
increases. We avoid these problems by the following twosdé&ne is that we perform a Taylor
expansion of Indevl (L) in terms ofpiy at g = 0 and calculate the expansion coefficients [1],

o[fm] 5 A [T () en 8 o

The Taylor expansion coefficients are rather easy to cakblausing the stochastic noise method.
Although we must cut off this expansion at an appropriatesioid 114, we can estimate the appli-
cation range where the approximation is valid for each a2, 3]. While the application range
of the Taylor expansion of I#c should be limited by the critical point becausec is singular

at the critical point, there is no such limit for the applioatrange in the expansion of R{P, 1ig)
because the weight factor should always be well-defined.

The sign problem is avoided by the following idea. We consédarobability distribution func-
tion as a function of the complex phase of the quark detemtiéia|F| = |detM(Lq)/ detM (0) ™
andP, i.e. w(P,|F|,8). If we assume the distribution function & is well-approximated by a
Gaussian function, the sign problem in the calculation &(P Liq) is completely solved [4].

We define the complex phase by a Taylor expanstba; NiINSN: 357 ImDan1(pg/T) 22
Since the partition function is real even at non-zero dgnsite distribution function has the
symmetry under the change frofhto —6. Therefore, the distribution function is written by
W(8) ~ exp—(a26? + a,0* + agh® + ---)]. Moreover, becaus®, is a trace of a matrix which
has space index [3], e.g21 O tr{M~1dM/d(pq/T)], the central limit theorem suggests that the
distribution function is well-approximated by a Gaussiandtion, when the system size is suffi-
ciently large in comparison to the correlation length betwdiagonal elements of the matrix. We
plotted the distribution of the complex phase in Fig. 1 (fjgdnd fitted by a Gaussian function
(dashed line). It is found that this approximation is quitelpwhence we consider the leading term
of the expansion only(P, |F|,8) O \/ax(P,|F|)/m exg—ax(P,|F|)82]. The coefficienty (P, |F|)
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Figure2: (left) The plaquette histogram and the effective potemtig, = 0. (right) The reweighting factor
InR(P, ug) for pig/T =0.5-25.

is given by ¥ (2a) = (6?) for eachP and|F|. The numerator of Eq. (1.3) is then evaluated by

(F(Hq)3(P' = P)) g o~ (€ Y= RIFDIF (1g) [ 5(P ~ P)) oo (2.2)
Because 1a, ~ O(Nsjie), the phase factor iR(P, 1z) decreases exponentially as a function of the
volume. However, the operator in Eq. (2.2) is always realfosgitive for each configuration in this
framework, hence the expectation valudRoP, Li4) is always larger than its statistical error, namely
the contribution IR(P, L) to the effective potentiaV (P, B, Liq) is always well-defined. Therefore,
the sign problem is completely avoided if we can assume thessian distribution 08.

3. Numerical results of the effective potential

We calculatew(P, B) andR(P, Lq) using data obtained by simulations in [3]. The Taylor expan-
sion coefficients are computed upCﬁng’). These are measured at sixteen simulation points from
B = 3.52 to 400 for the bare quark massa = 0.1. The corresponding temperature normalized by
the pseudo-critical temperature is in the rangd ¢T. = 0.76 to 198. The ratio of pseudo-scalar
and vector meson massesriss/my ~ 0.7 atf = 3.65. The lattice siz&lswe is 16° x 4. The number
of configurations is 1000 — 4000 for eafh

The probability distribution functiow(P,(3), i.e. the histogram oP for eachf, and the
effective potentiaV (P, 3) at g = 0 are given in Fig. 2(left). To obtaiw(P, 3), we grouped the
configurations by the value d? into blocks and counted the number of configurations in these
blocks, and the potenti® (P, ) is normalized by the minimum value for each temperature.

The results for IR(P, Liq) are shown by solid lines in Fig. 2 (right) fpg,/T = 0.5,1.0,1.5,2.0
and 25. We find a rapid change in RaroundP ~ 0.83, and the variation becomes largenggT
increases. The dashed lines in Fig. 2 (right) are the rethdtsve obtained when the effect of the
complex phase, i.e. ekpl/(4ay)], is omitted. These dashed lines correspond to the reweg@hti
factor with non-zero isospin chemical potentigaland zero quark chemical potentja [S]. The
variation of InR in terms of P becomes milder when the effect of the complex phase is ainitte
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Figure 3: The slope (left) and curvature (right) ofR{P, 1iq). The dashed line is the curvature-efnw.

This explains the difference between the phase diagram<C@ ®@ith non-zero quark chemical
potential and non-zero isospin chemical potential [4].

We discuss the shape of the effective potential at non-pgrarhe effective potential is ob-
tained fromV (P, B, ig) = — Inw(P, B) — InR(P, Liy) substituting the data in Fig. 2. From Eq. (1.2),
the slope oWV (P, B, Liq) can be controlled by,

V (P, B, tg) =V (P. Bo, Hg) — 6(B — Bo)NsiteP. 3.1)

under a change @@ — 3, however the curvature of the potential does not change. We expect
that the curvature vanishes at the endpoint of the first optiese transition line by canceling
d?(Inw)/dP? andd?(InR) /dP?. In order to analyze the sign dfV /dP?(P, 1), we fitted the data
of InR by a quadratic function o and calculate the first and second derivatives &P y) at
eachP. The results of the slope and curvature are shown in Fig. 8dohpy/T. In the region
aroundP ~ 0.83,d(InR)/dP becomes larger g%,/ T increases and R(P, Li5) changes sharply in
this region. The magnitude of the curvature oRlalso becomes larger @g/T increases.

To evaluated?(Inw) /dP?(P), we assumev(P, B) in Fig. 2 (left) is a Gaussian function. In this
case, the curvature &P) is given by —d?(Inw)/dP? = 6Nsjte/ Xp, Where xp = 6Nsite( (P — (P))?)
is the plaquette susceptibility. The dashed line in Figighg) is the result of-d?(Inw) /dP?(P).

It is found from Fig. 3 (right) that the maximum value df(InR)/dP?(P, 1) at P = 0.80
becomes larger thand?(Inw) /dP? for iq/T 2 2.5. This means that the curvature of the effective
potential vanishes gt,/T ~ 2.5 and becomes negative for largg/T, namely the shape of the
effective potential which is of quadratic type g = O changes to a double-well type at large
Ug/T. For the quantitative estimation of the endpoint of the finster phase transition, further
investigation must be needed. However, this argument gliiyauggests the existence of the first
order phase transition line in thi&, ;) plane. Further details of this analysis are given in [4].

4. Canonical partition function

Next, we want to apply the effective potential argument ®wreight factor as a function of
the quark number densify. The physical meaning of this potential is clearer thandfhi&because
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Figure4: The chemical potential as a function of the quark numberitdens

the weight factor for each quark numhbércorresponds to the canonical partition functiég,

Zoo(Tote) = 3 Ml T2 (T,N), N=pNS, p/T%=pN. (4.1)
The canonical partition function can be given by an inveraplace transformation [6, 7, 8],
3 /3 )
2c(T,N) = ZT/ / d(p /T)e NH/THIT) g o(T, o +ipk), (4.2)
—1/3

whereLlp is an appropriate real constant. Note tBaic(T, g+ 27T /3) = Z6c(T, Hg). Recently,
this canonical partition function is calculated fér= 4 using the Glasgow method [9]. However,
with present day computer resources, the calculation bgsthegow method is difficult except on
small lattices. We consider approximations which is vatidl&rge volume and low density in this
approach, as discussed in the first part of this paper.

We calculate the grand partition function by the Taylor exgan, Eq. (2.1),

Zac(THg) 1 / detM (g) \ ™ Nf o © Dy(Ha)"

Ha) ZEVI\Fa) M S = (MM I (F) ] 4.
ffec(T,O) ffGC M detM (O) (det (O)) © <e ! >(T,uq:0)(, 3)
whereV = N3. We moreover use a saddle point approximation, which isiviali a large sys-
tem. We find a saddle poimp in the complexuy/T plane for each configuration, which satisfies
[NeNe S g nDpz 1 — p] 43, = 0. The canonical partition function is given by

_ 3 e _
Zc(T,pV) = EfGC(TaO) <exp \ (Nth Z Dnzp — PZO)
n=1

for largeV. Here,D"(2) = (d?/dZ%) (N\N; S3v_, Dn2") andD" (z9) = |D" (z0)|€°.
The chemical potential, i.e. the slope of the effective ptad is also evaluated by

i 1

g 1a/? 7> (4.4)
V|D"
D@ (T,u=0)

0 A _ia 1
Hg  —10In Z5(T,pV) (explV (NN 57210028 — o)l 2y [ty >(T,,1q:o)
by _ 2INZCMAV) S .(4.5)
p <EXP[V (NeNc 3521 Dz — p20) [ € 2\ gy

>(T7Hq=0)



Sudy of the critical pointin lattice QCD at high temperature and density Shiniji Ejiri

This equation is similar to the formula of the reweightingthoel for finite ig. The operator in
the denominator corresponds to a reweighting factor, aaathlemical potential is an expectation
value of the saddle point calculated with this modificatiaatér.

We analyze the data used in the previous section. The Taypmansion coefficients up to
O(ug’) are used. The volum¢ = 16% would be sufficiently large, and we assume a Gaussian
distribution function for the complex phase of the reweightfactor, again. We find a saddle point
Zp numerically for each configuration, assumiggexists near the real axis in the low density region
of the complexug/T plane. We use muli reweighting method [10] combining all data obtained
at 16 points of3. Configurations are generated with the provability of thdtBoann weight in
Monte-Carlo simulations, however the important configora will change when the weight is
changed by the reweighting method. For such a case, the fidiiveighting is effective, since the
important configurations are automatically selected anadingpnfigurations generated at mygi-
and also this method is useful for the interpolation betwtbersimulation points.

We plot the result ofuq/T in Fig. 4 as a function op /T2 for each temperature. The dot-
dashed line is the value in the free gas limit. As seen in Fi@le?), the configurations do not
distribute uniformly in the range @& which is necessary in this analysis, and correct resultsatan
be obtained if the important configurations are missing. ot temperature, the important value
of P changes very much gsincreases, therefore we plotted only the data when the &dpmt
value ofP is on the peaks of the histogramsmin Fig. 2 (left). The dashed lines are cubic spline
interpolations of these data.

It is found from this figure that a qualitative featuregf/ T changes around /T; ~ 0.8, i.e.
Hg/T increases monotonically gsincreases above 0.8, whereas it shows an s-shape below 0.8.
This means that there is more than one values/af for one value oftg/T below T /T, ~ 0.8.
This is a signature of a first order phase transition. Theativalue ofpg/T is about 25, which is
consistent with the result in the previous section. AltHofigrther studies including justifications
of these approximations used in this analysis are necefmanyore qualitative investigation, this
result also suggests the existence of the first order phassition line in the(T, pg) plane.
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