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We revisit two-color two-flavor Quantum Chromodynamics (QCD) which suffers from the sign

problem of the Dirac determinant at finite baryon or quark density if a finite isospin chemical

potential breaks two-flavor degeneracy. We discuss the eigenvalue distribution of the single-flavor

Dirac operator to find the quartet structure, i.e. ifλ + m is an eigenvalue wherem is the current

quark mass in a continuum theory,λ ∗+ m, −λ + m, and−λ ∗+ m must be eigenvalues as well.

As a result the product of these four eigenvalues makes a non-negative real number, unlessλ is

real. The sign problem remains harmful for realλ because not a quartet but a pair ofλ +m and

−λ +mappears then and its product is not necessarily non-negative. In such a case, however, the

sign problem has a different nature from the ordinary one in three-color QCD at finite density.

We can rather identify it as the sign problem in the parity broken (or Aoki) phase inherent in the

Wilson fermion formalism.
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1. Introduction

It is a longstanding problem to uncover the phase structure of dense nuclear and quark matter in
the low temperature and high baryon density region which is quite complicated. From the academic
point of view, our curiosity urges us to imagine what an extreme state of cold quark matter at
asymptotic high density is like. In fact, at density far larger than the strange quark massMs but
still smaller than the charm, bottom, and top quark masses, there has been established a consensus
that quark matter takes on color superconductivity in a color-flavor locked (CFL) manner. Then,
what comes next as the density goes down? This is an important question because, if quark matter
appears in neutron star cores, its state would be strongly affected by the “pressure” induced byMs

which tends to tear the Cooper pair apart.

This “pressure” makes the phase structure of dense nuclear and quark matter quite compli-
cated especially in the intermediate density region where the density is at most up to10ρ0 with
ρ0 being the normal nuclear density. So far, many candidates for the ground state at intermediate
density have been proposed, among which a scenario attracting much theoretical interest in recent
years is that the Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) [1] state could take over the gapless
region in which the “pressure” exceeds the superconducting pairing energy. In the LOFF state each
Cooper pair carries a non-vanishing total momentum2~q which breaks translational and rotational
symmetries spontaneously. Consequently we can naturally anticipate an inhomogeneous color su-
perconductor, or specifically, acrystallinecolor superconductor [2]. This theoretical possibility is
extremely interesting; the pairing gap takes acrystalstructure in a superconductingfluid.

For the moment it is an unsolved problem to clarify the energetically most favored crystal
structure in the LOFF state. We shall here revisit the LOFF phase in two-color two-flavor QCD
in the presence of both the quark chemical potentialµq and the isospin chemical potentialµI . It
was pointed out in Ref. [3] that the interval ofµI in which the plane-wave LOFF state is favored
exists in such a system at least at weak coupling. Two-color QCD is known to be free from the sign
problem of the Dirac determinant at finite density [4], and so, it would be great if one can look into
the crystal structure of the two-color LOFF state by means of the Monte-Carlo simulation, which
could provide us with useful hints to attack three-color QCD problems. It is, however, impossible
to perform the simulation directly to reveal the crystal structure, as discussed in Ref. [3], because
two (or an even number of) degenerate quark flavors are required in order that the sign problem
is completely absent from two-color QCD. Since the isospin chemical potential is introduced to
exert a “pressure” between different quark flavors, even two-color QCD would suffer from the sign
problem withµq 6= 0 andµI 6= 0.

We shall closely examine how the sign problem could emerge in two-color single-flavor QCD
in what follows. [It is enough to focus on the single-flavor case because the Dirac determinant with
multiple flavors is just a product of the determinant for respective flavor sectors.] We will here not
resolve but classify the sign problem; we will find that the sign problem in two-color single-flavor
QCD is similar to the sign problem in the parity broken or the Aoki phase [5]. In a sense, we
may say that the superfluid phase in two-color QCD could be roughly regarded as the Aoki phase
in which the pion condensation spontaneously occurs, though we have to distinguish the baryonic
pion condensate from the ordinary mesonic pion condensate. Here, I would like to refer to an
interesting related work by Handset al. [6].
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In the final part of this article, we will briefly mention on the likely phase diagram of two-
color two-flavor QCD with non-zeroµq and µI . We will present a model prediction [7] for the
phase boundary in the parameter region spanned byµq andµI and will locate the LOFF-favored
window based on the mean-field calculation.

2. Sign Problem and Parity Broken Phase

We shall here summarize the sign problem of the Dirac determinant and discuss that two-color
QCD nearly escapes from it for any number of quark flavors except for the possible parity broken
phase. The single-flavor Dirac operator in question reads

M (µq) = γµDµ + γ4µq +m (2.1)

in continuum Euclidean space, whereDµ denotes the covariant derivative containing gauge fields.
In the presence of the isospin chemical potentialµI with u andd flavors, the Dirac operator is then a
direct sum of two flavor sectors:M (µu)⊕M (µd). We shall thus focus on the single-flavorM (µq)
to discuss the sign problem, sincedetM (µq) ≥ 0 is sufficient to claimdet[M (µu)⊕M (µd)] =
detM (µu) ·detM (µd)≥ 0.

First of all, let us confirm that the zero-density continuum Dirac determinant is certainly non-
negative and real. Because the Euclidean gamma matricesγµ ’s are hermitian by convention, the
eigenvalueλn of anti-hermitianγµDµ , i.e.,

γµDµψn = λnψn , (2.2)

is pure imaginary. The eigenstateγ5ψn has an eigenvalue−λn, which equalsλ ∗n . The Dirac de-
terminant at zero density is, therefore, a product of all the paired eigenvaluesλn +m andλ ∗n +m,
which is non-negative because|λn+m|2≥ 0. In this case, the eigenvalue distribution is only on the
line Reλ = m, which is qualitatively illustrated in Fig.1 (a).

Whenµq is nonzero,γ4µq is hermitian and thus the eigenvalueλn defined by

(
γµDµ + γ4µq

)
ψn = λnψn , (2.3)

is no longer pure imaginary but complex. Here again,γ5ψn has an eigenvalue−λn, but it is different
from λ ∗n in this case. Therefore, the Dirac determinant, given by∏n(λn + m)(−λn + m), is not
necessarily non-negative, and when it is negative for some gauge configurations, the sign problem
occurs. If we sketch the eigenvalue distribution corresponding to such a situation, it should be tilted
and spreading over the complex plane like Fig.1 (c). Here, so far, we have seen what is going on
in general cases other than two-color QCD. Let us next turn to the case in two-color QCD.

Two-color QCD is unique in the sense that it has extra symmetry so that one can find another
eigenstateσ2C−1γ5ψ∗

n with an eigenvalueλ ∗n , whereσ2 is the second Pauli matrix in color space
andC represents the charge conjugation. Obviously, one more eigenstate multiplied byγ5 has an
eigenvalue−λ ∗n . Consequently, the eigenvalues of the Dirac operator always constitute a quartet;
λn + m, −λn + m, λ ∗n + m, and−λ ∗n + m, leading to the non-negative Dirac determinant through
the relation|λn + m|2 · | − λn + m|2 ≥ 0. This argument holds as long asλn is complex. Ifλn

happens to be real, however, there appear onlyλn +mand−λn +m instead of a quartet. The Dirac
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Figure 1: Qualitative sketches for the eigenvalue distribution of the Dirac operator (a) at zero density without
the Wilson term, (b) at zero density with the Wilson term or at finite density in two-color QCD, (c) at finite
density in QCD, and (d) in the Aoki phase at zero density in QCD or at zero/finite density in two-color QCD.

determinant becomes negative for−λn + m < 0, while the determinant is real and the squared
quantity is always non-negative. Thus, this is the reason we need two (or an even number of) quark
flavors to guarantee the non-negative Dirac determinant [8].

Then, one might have thought that the sign problem remains after all and the above-mentioned
clarification enables us to make no progress at all. What we would emphasize here is, however,
that the sign problem in two-color QCD has totally different characteristics from the ordinary sign
problem sketched in Fig.1 (c). To see it, let us take one farther step to come close to the lattice
formulation.

We could have put all our discussions below on the lattice but we will not do so. It is because
the massmhas to be replaced by the hopping parameterκ in the lattice language and it is not trans-
parent to make an intuitively comprehensible comparison to the situation in the continuum theory
we have understood so far. Hence, instead of mathematically rigorous expressions in the lattice
formulation, we shall stick to using a more familiar language in the continuum theory. Actually,
the essential point in our discussions is only that the Dirac operator must have an extra term to
eliminate the doublers in the Wilson fermion formalism. Of course, such a term, which is usually
called the Wilson term, should be zero in the continuum limit, but if we keep the Wilson term in
the continuum language, the Dirac operator takes a form of

M (µq) = γµDµ + γ4µq +m+ rDµDµ (2.4)

with the Wilson coefficientr which, in fact, goes to zero in the continuum limit. It is crucial to note
that the operatorDµDµ is hermitian, so that the eigenvalueλn defined by

(
γµDµ + rDµDµ)

ψn = λnψn , (2.5)

is generally complex. How far the eigenvalue distribution can be away from the vertical line at
Reλ = m depends onr. As long asr stays small as compared withm, the eigenvalue distribution
at µq = 0 is like Fig. 1 (b). Still, the Dirac determinant is non-negative real, as it should be.
It is because of the quartet structure of the eigenvalues,λn + m, −λn + m, λ ∗n + m, and−λ ∗n +
m [9]. This might sound confusing, but this quartet structure has nothing to do with the two-
color specialty. To avoid confusion, we should reiterate what we are addressing here. The system
of our present interest is QCD itself at zero densitymuq = 0 with non-zero Wilson coefficient
r 6= 0. Strictly speaking, as the simulation approaches the weak-coupling or continuum limit, the
eigenvalue distribution has to produce blank spots along the real axis [5, 9], but such details are
irrelevant to our discussions.
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In the presence of finite baryon or quark chemical potential, the eigenvalue distribution is tilted
with not a quartet but a pair of eigenvaluesλn +mand−λn +mas shown in Fig.1 (c). Under such
circumstances the Wilson term makes no qualitative difference for the sign problem occurring at
finite density.

As a matter of fact, the Dirac determinant at zero density is not always safe from the sign prob-
lem once the Wilson term is added in the Lagrangian. One can easily imagine from Fig.1 (b) what
would transpire in the eigenvalue distribution if one goes on increasingr. The distribution would
become wider along the real axis and eventually the edge would touch the origin (see Fig.1 (d)).
Then, the eigenvalues enter the negative region,Reλn < 0. If λn is not real, nevertheless, the product
of λn+mandλ ∗n +mstill makes a non-negative real number. However, the eigenvalue distribution
generally contains realλn that does not have a partnerλ ∗n but sits on the real axis alone. Therefore,
when such realλn is smaller than−m, the sign problem occurs even at zero density! This kind
of the sign problem has been well-known as realization of the parity broken or Aoki phase since
seminal works by Aoki [5] more than two decades ago.

The physical interpretation for Fig.1 (d) is as follows. From the Banks-Casher relation in the
pion channel, the non-zero eigenvalue density in the vicinity of the origin leads to a finite value of
the pion condensate〈q̄γ5q〉 that breaks parity and is usually vanishing in the case like Fig.1 (a). The
spontaneous generation of〈q̄γ5q〉 6= 0 happens as the second-order phase transition with varyingm
andr and the correlation length between pion operators develops infinite at the critical point. This
means that the system has the massless pion then. The chiral limit is, therefore, not the limit of
m→ 0 but defined along the phase boundaryr = rc(m) on which the pion is massless.

By now, the reader might have already noticed that what is happening in the parity broken
phase is completely parallel to the sign problem in two-color QCD at finite density. Owing to
extra symmetry peculiar to two-color QCD, the quartet structure in the eigenvalue distribution is
maintained even in the presence of non-zero density. As a result the eigenvalue distribution in two-
color QCD at finite density is like either Fig.1 (b) or Fig.1 (d) rather than Fig.1 (c) depending on
µq, m, andr. Actually one cannot tell the sign problem in two-color QCD from the sign problem
in the parity broken phase in principle. It implies that one should, in turn, distinguish the sign
problem in two-color QCD from the sign problem in finite-density QCD.

It is a theoretically intriguing question of great significance to make clear the phase structure
of the parity broken phase in two-color QCD at finite density. The numerical simulation is feasible
because the Dirac determinant keeps being non-negative real until the parity broken phase occurs,
so that the phase boundary is accessible where the “chiral limit” is achieved. It would be non-trivial
whether this chiral limit on the phase boundary should correspond to the critical point associated
with pion superfluidity or not. In the chiral limit the mesonic pion is massless, while on the onset of
superfluidity the baryonic pion is massless. Since the particle-antiparticle symmetry (Pauli-Gürsey
symmetry) is explicitly broken byµq 6= 0, it is far from obvious that two criticality should be
achieved at the same time. My conjecture is that the “chiral limit” in fact turns out to be a critical
point for superfluidity, which would be able to be tested by the hopping parameter expansion at
strong coupling along a similar line to Ref. [10], or in the direct numerical simulation.
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Figure 2: Mean-field predictions for the phase structure of two-color two-flavor QCD in theµq and µI

plane with only the single plane-wave LOFF state taken into account. The LOFF state occurs in the region
δ µ2 < µI < δ µ1. The left figure is for weak coupling with the superfluid gap∆(µq = 0.5Λ,µI = 0) chosen
to be0.05Λ, and the right for stronger coupling with∆0(µq = 0.5Λ,µI = 0) chosen to be0.5Λ. In both cases
a uniform superfluid is favored forµI < δ µ1 or µI < δ µ2.

3. Phase Diagram

Finally, we shall make an overview for physical implications we can expect if we somehow
manage to resolve the sign problem in two-color single-flavor QCD withµq 6= 0 or in two-color
two-flavor QCD withµq 6= 0 andµI 6= 0. As already mentioned in Introduction, one of the most
interesting applications is the analysis on the LOFF state on the lattice.

In Ref. [7], Kei Iida and the present author have given mean-field predictions for the phase
diagram in theµq andµI plane. There, the coupling strength is specified by the magnitude of the
superfluid gap or the diquark condensate∆0 at a certain density (chosen arbitrarily to beµq = 0.5Λ)
with µI = 0, whereΛ is the ultraviolet cutoff in momentum space that corresponds to the lattice
spacing in configuration space.

In the weak-coupling case (∆0 = 0.05Λ) we found the interval ofµI in which the single plane-
wave LOFF state has a lower energy than a uniform superfluid. As long asµq is not so large
as the saturation effect is evident, the LOFF-favored window is0.71∆ < µI < 0.75∆ that is well
consistent with the known perturbative results [1]. In the stronger-coupling case (∆0 = 0.5Λ) that
is more relevant to the possible lattice-simulation environment, the LOFF window does not appear
until µq is larger than about0.65Λ. In the higher density region the LOFF-favored window opens
with enhancement by the saturation effect. Here, we should emphasize that the windows indicated
in Fig. 2 aresufficientconditions for some state other than a uniform superfluid to be the ground
state. The single plane-wave is the simplest and presumably worst ansatz to describe the LOFF
state; the realistic crystalline phase must have a wider window that embraces the LOFF-favored
window under the single plane-wave ansatz. In view of Fig.2 I think that we have a good chance
to observe the LOFF state on the lattice.

To do so, needless to say, we cannot walk around the problem to understand how the sign
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problem in the parity broken phase is involved in superfluidity. Usually, one dismisses the parity
broken phase as an unphysical state, but in the two-color QCD system, it could be a physical state.
Hence, in this sense, the possible relation between superfluidity and the parity broken phase is a
profound problem useful for us to acquire a deeper insight into the sign problem from the physical
point of view.
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