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Static quark free energies at finite temperature
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We determine the static quark free energies around the transition temperature using 2+1 flavors

of staggered fermions. Simulations are carried out onNt = 4, 6, 8 and 10 lattices using physical

quark masses. The free energies extracted from Polyakov-loop correlators are extrapolated to the

continuum limit.
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Quark free energy

1. Introduction

Our aim is to compute the free energy of a static quark-antiquark pair. There are several
measurements on this quantity in the literature (for recentpublications cf. [1, 2, 3, 4]). Here we go
beyond these computations, we use physical quark masses andperform a careful continuum limit
extrapolation with the necessary renormalization procedure.

The quark-antiquark free energy can be expressed as correlators of Polyakov loops:

e−Fq̄q(r)/T ∼ ∑
x

〈

TrP(x) TrP†(x+ r)
〉

, (1.1)

wherer is a vector in the spacial direction,T = 1/(Nta) is the temperature andx runs over all the
spatial lattice sites.P is the Polyakov loop

P(x) =
Nt−1

∏
x4=0

U4(x,x4), (1.2)

whereUµ(x) ∈ SU(3) is the link gauge field.
In pure gauge theory we expect that the Polyakov loop correlator behaves Coulomb-like at

short distances. In the deconfined phase the Coulomb behavior is screened at large distances, the
exponential range defines the screening mass. In the confinedphase the free energy is linearly
rising, the derivative of the rise is the string tension. This behavior can give an account for the
quark confinement and Regge trajectories at zero temperature.

The above picture is modified, however, when we include dynamical quarks. At large distances
it is favorable to generate a quark-antiquark pair from the vacuum, which then screens the color
field between the two Polyakov loops [5]. From this point (thestring breaking scale) the lowest
energy level will be insensitive of the position of the heavyquarks, resulting in a constant free
energy. The value of this constant restricts the possible bound state energies, calculated in the
given potential, as no bound state can be formed with energy larger then the maximum energy.

At finite temperature the above picture persists, but we can also have general expectations
about the temperature dependence. Physically we expect that in a thermal vacuum it is easier to
generate a quark-antiquark pair than atT = 0, since there are thermally excited particles around
which can scatter on the gluonic string between the static quark-antiquark pair. The gluonic string,
being excited itself, can more easily break into a dynamicalquark-antiquark pair. This suggests
that the string breaking scale and so the flattened free energy value decreases with the temperature.
This dynamical picture coincides with the thermodynamicalexpectation. The negative temperature
derivative of the free energy is the entropy, which must be positive in a stable system:

−∂Fq̄q(r,T)

∂T

∣

∣

∣

∣

V
= Sq̄q(r,T) > 0. (1.3)

This formula should be true for anyr, sincer here is just a parameter, telling the position of the
fixed Polyakov loops. As a consequence we expect that at any point the quark-antiquark free energy
decreases with the temperature. This condition can be an important check for the correctness of the
renormalization procedure.

String breaking effects compete with screening. If the freeenergy is screened before it can
rise to the string breaking scale, then screening wins, otherwise the string breaking effect. But the
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main features of the free energy are the same in both cases. Since there is no phase transition in
QCD, the two regimes are connected with each other continuously.

2. Renormalization

When we approach the continuum limit, the value of the unrenormalized free energy diverges.
This is because in a single Polyakov loop the self-energy is divergent. We expect:

〈TrP(x)〉
∣

∣

∣

∣

div
= e−C(a)Nt a = e−C(a)/T , (2.1)

whereC(a) → ∞ in the continuum limit. At finitea the specific value ofC(a) has no physical
meaning, since it depends on how we define the “divergent part” of the self-energy (renormalization
scheme). Although the constantC(a) can be chosen in different ways, it is important that it should
only depend on the lattice spacing. In the literature there are several ways to fix this constant [3, 6].

Subtracting the divergent part from the free energy, the renormalized free energy can be defined
as

e−F ren
q̄q (r,a)/T = e−Fq̄q(r,a)/Te2C(a)/T , ⇒ F ren

q̄q (r,a) = Fq̄q(r,a)−2C(a). (2.2)

A possible way of fixingC(a) is to take a physical observable based onFq̄q, and requiring that
it should be independent ofa. We emphasize that there is no restriction on the physical quantity
other than it must be fixed and be finite ifFq̄q is finite. It needs not to be a zero temperature
observable. In fact, the most useful quantity in our calculation was the constant value of the free
energy after the string breaking/screening, at a fixed temperature. We kept this value 0 for alla,
that is we have chosen the constantC(a) as

2C(a) = Fq̄q(r → ∞,a,T0), (2.3)

with a fixedT0 (its value wasT0 = 190 MeV in the calculation). The renormalized free energy
therefore reads at any temperatures as

F ren
q̄q (r,a,T) = Fq̄q(r,a,T)−Fq̄q(r → ∞,a,T0). (2.4)

3. Results

We used Symanzik improved gauge- and stout improved staggered fermionic actions. The
parameters of the action were the same as in Refs. [7]. Table 1summarizes the lattices we used
for the measurements. These are the same gauge configurations as in Ref [8]. We measured
the Polyakov loop correlator for each possibler values which could fit in the half-size of the
spatial extent. Next we averaged the correlator for distances r =

√
r2, including on- and off-axis

contributions. Note, that we take the continuum limit, where rotation invariance should be restored.
We binned the data according to the lattice spacing, averaging Polyakov loop correlators with the
samen = (int)(r +0.5). From the binned Polyakov loops we computed the binned free energy as
Fq̄q,n = ln〈PP〉n/(Nta). Thea(β ) function was taken from the lines of constant physics determined
earlier for these set of lattices in [8, 9]. There the condition for the determination ofβ and the quark
masses was to keep the ratios of the physical values ofmπ , fK andmK fixed at zero temperature.
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geometry β range # of β values

163×4 3.2 – 3.425 19

243×6 3.45 – 3.705 11

323×8 3.57 – 3.725 7

48×402×10 3.63 – 3.86 7

Table 1: The lattices used for the Polyakov loop correlators.

The binned free energy was renormalized in the following way. For eachNt andβ we fitted
the free energies with the function

Ff it (r) =
ae−br

rc +d. (3.1)

We then interpolated the fitted functions on eachNt to theβ values corresponding toT0 = 190 MeV.
The asymptotic values of these four (Nt = 4,6,8,10) free energies gave 2C as a function ofβ . The
four points and a fitted polynomial can be seen on Fig. 1. The value ofT0 = 190 MeV was motivated

Figure 1: The additive renormalization factor to the free energy, as afunction ofβ .

by the fact that it lies already in the deconfined phase where the statistical errors of the free energy
are much smaller than in the confined phase. At this temperature the free energy at large distances,
by definition, has no lattice spacing dependence. At nearby temperatures we expect similarly good
behavior.

Once we have the value of 2C(β ) we can subtract it from all free energy values, thus having
their renormalized value. The result for temperatureT = 189 MeV can be seen on Fig. 2 together
with the fitted curve. ThisNt = 8 point was the closest to the renormalization temperatureT0, where
we had raw data without interpolation.
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Figure 2: The renormalized free energy atT = 189 MeV. The smooth curve isFf it discussed in the text.

Since we now know the renormalized free energy for all lattice spacings, we can take the
continuum limit by using theNt = 4,6,8 and 10 free energies, and extrapolate in 1/N2

t ∼ a2 → 0.
In Fig. 3 one can see the free energies at differentNt values forT = 200 MeV. We can see that
the lattice artefacts are small,Nt = 8 and 10 results almost completely coincide. Therefore a safe
extrapolation to 1/N2

t = 0 is possible. We estimate the systematic error of this extrapolation by
comparing the results coming fromNt = 6,8,10 extrapolation andNt = 8,10 extrapolation. The
result for the renormalized free energy at different temperatures, including both the statistical and
the systematic errors, can be seen on Fig. 4.

4. Conclusions

We have determined the finite temperature renormalized static quark free energy in QCD with
dynamical staggered fermions using physical quark masses.According to our expectations, the free
energy is Coulomb-like for small distances, at larger distances it is screened and/or exhibits string
breaking, and so flattens out. An important feature of the computation was the careful renormal-
ization procedure. We fixed a physical quantity: the asymptotic value of the free energy atT = 190
MeV, which was kept zero for all lattice spacings. This defines the additive renormalization factor
for the quark-antiquark free energy as a function of the lattice spacing. At different temperatures
and different distances this factor must be used to renormalize the free energy. The free energy
defined in this way is monotonically decreasing as a functionof the temperature for all distances.
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Figure 3: The renormalized free energies forNt = 6,8 and 10.

Figure 4: The renormalized free energies in the continuum limit.
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