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1. Introduction

At high temperature, QCD matter undergoes a deconfinemamgition, where ordinary had-
ronic matter transforms into strongly interacting quatidesn plasma. In the absence of quarks,
Nt = 0, the transition is a symmetry-breaking first order traosit where the order parameter is
the thermal Wilson line. The non-zero expectation valuéhef\ilson line signals the breaking of
the Z(3) center symmetry of quarkless QCD at high tempegatur

The transition has been studied extensively using latiitellations [1], but becomes com-
putationally exceedingly expensive at high temperatdrgs5T;. At high T, the complementary
approach has been to construct perturbatively effectigeribs, such as EQCD and MQCD, using
the method of dimensional reduction [2]. In the dimensiaraluction procedure, however, one
expands the temporal gauge fields around one of the Z(3) vaoddhus explicitly violates the
center symmetry and the effective theories fail to desc@i@D for T below 5I..

As a unification of these strategies, a 3D effective theorhatf QCD respecting the Z(3)
symmetry has been constructed in [3]. At high temperatutes effective theory is matched to
EQCD but still preserves the center symmetry. The effediia®ry is further connected to full
QCD by matching the domain wall profile separating two déferZ(3) minima. Thus, one hopes
that the range of validity of this theory would extend dowrT{o

In order to perform lattice simulations the theory has beemtilated on a lattice and the
lattice theory has been matched to the continuum theory Jin The effective theory is super-
renormalizable, and thus the exact relations between thincmmMS and lattice regulated theo-
ries can be obtained via two-loop lattice perturbation tireo

2. Theory

The theory we are studying is defined by a three dimensionatireoum action, which we
renormalize in theVlS scheme

S= / d3—2fx{ %TrFiJZ +Tr(DiZ'DiZ) +Vo(2) +v1(2)} , (2.1)
where
Fij = diA; — JjA +ig3[Ai, Ajl, Di =d —igs[A, | (2.2)

andZ is a 3x 3 complex matrix, which in the limie — 0 has dimension did = v/GeV. The
gauge fields?; are Hermitean tracelessx33 matrices and can be expressed using generators of
SU(3),A = AT, with TrTaTP = 262 . The covariant derivative is in the adjoint representation
The potentials are

Vo(Z) = ¢ Tr[Z"Z] + 2c,Re(DetiZ]) + c3Tr[(272)?), (2.3)
Vi(Z) = dy Tr[MTM] 4 2d,Re(TrM3]) + ds Tr[(MTM)?], (2.4)
whereM = Z — %Tr[Z]]l is the traceless part &. Here, the gauge couplings has a positive

mass dimension difg3] =GeV, making the theory super-renormalizable. Because eftiper-
renormalizability, the coefficients, c3, do, andds are renormalization scale independent and only
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the mass terms; andd; acquire a scale dependence in & renormalization scheme. The
coefficientsc;, di, andgz can be matched to the parameters of full thermal QCD by inmgosi
the conditions that the theory reduce to EQCD at the high &satpre limit, and that the theory
reproduce the correct domain wall profile of full QCD [3]. Shlefines a subset of parameter values
(with a limited accuracy due to perturbative matching), Wdrich the theory describes thermal
QCD. However, we consider here the theory in general, andotl@astrict ourselves only to the
perturbative matching regime.

The action is invariant under local gauge transformatiovith Z transforming in the adjoint
representation:

[
A) — G (A-(x) —gai) G 1), (25)
Z(x) — G(X)Z(x)G1(x), (2.6)
whereG(x) eSU(3). In addition to the local transformations, the act®imvariant under the global

Z(3) transformation
Z—d¥™8z n=12... (2.7)

3. Lattice action

The lattice action corresponding to the continuum theorylmawritten asS= Sy + Sz, where

1
=B 3 {1— éReTr{um] (3.1)
<]
is the standard the Wilson action with the lattice couplingstant3 = 6/(ag3).
The kinetic term, T(DiZ'D;Z), is discretized by replacing the covariant derivatives tyeci-
ant lattice differences. Then the scalar sector of the actads:

_ E 515 S5t . V4 ANt
S = 2( B> XZIReTr[z 2 — 2V Ui () Z(x+ DU (x) (3.2)

6\°3 prn . prn SN . SR npon

+ (5) S (&1Tr{Z"2)+ 2¢,ReDef + &sTr((Z72)?] + ci TrM M) + 2d,ReTM® + dg Tr{(MTM)?))
X

wherecf,d,l\?l, andZ are dimensionless. Only the mass teltmaﬁdcfl require non-trivial renor-

malization and all the other terms can be matched to oftieP) on tree-level by simply scaling

with gs:

Z=gZ, M =gsM (3.3)
¢ = 0362, dp = g3d> (3.4)
C3 = g5Cs, d3 = g30. (3.5)

For the mass terms, renormalization has to be carried ouhatdhe long distance physics is the
same in both regularization schemes. A two-loop latticéuypbation theory calculation gives:
N _C]_ 1

= 6.351822833 —
C1 gg_ 41T 3B

[<6463 + %Sé§> (logB +0.08849 + 37.08635 | + 0(B 1)
(3.6)

1672
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and

- B - 1 -
dy =— — —— (3.17591+ 5.64608)3 ) — —— 1 41.780852+ 37.08631
! g3 4m ( + 3) 16m2 { i 3

280, ~ 184~ . 92 9 _
- (702 —64d3+ ngcﬁ gdg + 5) [logB +0.08849 } +0(B™Y). (3.7)
There are also higher order corrections (corrections oéioft| 1) corresponding to ordef (a)
in lattice spacing), but their effect vanishes in the camtim limit. Various operators have also

been renormalized in [4] on the lattice in order to convedirtlexpectation values to continuum
regularization.

4. Phase diagram of V1(Z)

A simpler model is obtained from the original theory by s@itt; = 0. In this model, the trace
of Z decouples and can be integrated over as a free scalar fielithamelevant degree of freedom
is thus a traceless complex mathk The model is defined by the action:

S— /d3x[:—ZLTrEjZ+TrDiMTDiM+lerMTM+2d2Re(Tr[M3])—|—d3Tr(MTM)2 . (4.1)

If the cubic termd, is zero, the Lagrangian is invariant under a U(1) global swimynM — gM,
g €U(1). The breaking of the symmetry is signalled by a locakonoarameter:

o =/ (T M+ M1R)2 4 (Tr(M — M1)3)2. 4.2)

In the symmetric phase/ is strictly zero and in the broken phase it has a hon-zerowacex-
pectation value, while the two phases are separated by afitst transition. In the broken phase
(TrMTM) is larger than in the symmetric phase. After the inclusiorthef cubic term,e7 is no
longer strictly an order parameter, since the U(1) symmistexplicitly broken. However, the first
order transition remains and is accompanied with a sigmifidacontinuity ineZ and(TrM™™).

4.1 Latticeanalysis

A non-perturbative lattice analysis has been performedbtaio the phase structure of the
model. For the simulations we used a hybrid Monte-Carlo rétlym for the scalar fields and
Kennedy-Pendleton quasi heat bath and full group overmgilax for the link variables.

The transition was found to be of the first order for all paréangalues used in the simulations
(d3 < 4 andd, < 0.15) accompanied with a large latent heat and surface tensysiteresis curves
showing discontinuity around critical point kﬁ'rMTM>m can be seen in Fig.1. The probability
distributions of TMTM along the critical curve are very strongly separated (sge2li This makes
the system change its phase very infrequently during a sitionl, and a multicanonical algorithm
is needed to accommodate a phase flip in reasonable timesyf@yatem of a modest size. Even
with the multicanonical algorithm, the critical slowingstécts us to physical volumes up¥%<
50/95.

The pseudo-critical point was determined requiring equabability weight for TM™™ in
both phases. The simulations were performed @itk 12 and a lattice siz&l® = 128, which
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Figure 1: Discontinuity in the quadratic condensate in Continuurrumgzation<TrMTM>m for d3 =
0.1,1,3. The phase transition gets weaker as the couplingrows. The metastable regions shrink and
the discontinuity diminishes.

precludes the continuum extrapolation as well as the thdymamical limit. However, these limits
were studied for one set of parameter values. The dependéribe critical point on the lattice
spacing was beyond our resolution for the lattice spacirsgsl and the volume dependence was
found to be of order of five per cent for the volumes used (sgeSBi

The phase diagram can be seen in Fig.4. The non-perturtmtiiel line measured from the
lattice follows the one-loop perturbative result for smallues ofds, but for largerds fluctuations
make the system prefer the symmetric phase. The discontiimui(TrM™™) along the critical
line diminishes, aslz gets larger, but it seems that the discontinuity persistsn & its magnitude
diminishes in the limitl; — o suggesting that there is a first order phase transition fp(aositive)
value ofds.

Tr(M M)/g;

Figure2: Histograms of TM™M in logarithmic scale withi, = 0 along the critical curve. Transition channel
between the peaks weakens and the transition gets stramgdedreasingls. Ford3/g§ = 0.5, the relative
probability density in the tunneling channel is suppredsed factor~ 1010,

5. Conclusions

The exact relations between the lattice and continb@regulated formulations of the Z(3)-
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Figure 3: Volume and lattice spacing dependence of the pseudoalitiint withds = 2 andd, = 0.1. The
pseudo-critical point was determined by requiring equabgbility weight for TMTM in both phases. The
lines represent linear fits. The dependence on lattice sgacid volume seem to be within 5% for the lattice
spacings and volumes used.

symmetric 3D effective theory of hot QCD have been calcdlate[4]. The Lagrangians and the
operators up to cubic ones have been matched(&). These results make the non-perturbative
lattice study of the theory possible.

An interesting model with non-trivial dynamics is obtaineg settingc; = 0 in Eq.(2.3). The
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Figure 4. The phase diagram of the soft potential as a functiod,0fl, andds. First order critical line
separates two phases. Solid lines represent polynomisbfite lattice data points and dashed lines are the
perturbative predictions. The symmetric phase refers ¢optase where with, = 0 the order parameter
vanishes and witk, # 0 is smaller than in the broken phase. On the right pdgel 2.
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phase diagram of this model has been determined usingelaitculations. Two distinct phases
were found, separated by a strong first order transition.

In the future, it is our goal to map out the phase diagram infilileparameter space of the
theory, in order to search for regions in which the phaserdiagvould resemble that expected for
the finite-temperature SU(3) pure Yang-Mills theory.
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