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1. Introduction

Numerical QCD lattice computations of bulk thermodynamiaugtities like energy density or
pressure suffer from the fact that the signal decreasemgiopal to I/N#. One is therefore forced
to carry out investigations into these quantities at fasriyall values of the temporal lattice extent
N;. At fixed temperaturd = 1/aN;, this in turn amounts to relying on simulations on rathersea
lattices. It is therefore important to reduce the discegion effects by means of utilizing improved
actions.

The use of discretization schemes which have been built pyvawe the Stefan-Boltzmann
limit on the lattice has been observed to also lead to impnave in the interacting case [1].
Moreover, comparisons with alternative, non-lattice apphes as e.g. in [2] become more reliable
if the high temperature limit is under control.

Here, we proof in this limit that fermion actions with a disgien relation improved t&’(a")
also warrant bulk thermodynamic quantities to be affectgdaltice artefacts only at the same
order. We further give examples for fermions of the staggj@ewell as of Wilson type.

2. Thegeneral case

The dispersion relatiok (P) is obtained from the zeroes of the denomindloof the quark
propagator, e.g. in the naive discretization

3
D(E=ips,P)=0 & Y sin(apy)—sinif(aE) = 0 (2.1)
K=1
In general D can be written as a polynomial in $ifapy), (in sir?(aps/2) for Wilson-type fermions),
P !
D(ps, ) = 3 A(P) sin” (apu) (22)

with coefficientsA (B). RewritingD in terms of its rootsw (),

p
D(ke, /) =Ap(P [ ] [sir(aks) + w?(P)] (2.3)
1=
(whereks = p4 for staggered ankly = p4/2 for Wilson quarks) immediately gives the dispersion
relation(s)

sint? (ag () = —sinf (aks) = o (P) (2.4)

(with & = E; for staggered ang = E; /2 for Wilson). AlthoughD is real, the roots can in general
be complex. However, the root which survives the continuumit,l c, to be definite, is real.
For both, standard staggered and standard Wilson fermianslispersion relation receives

0 (@?) corrections,
3

EXp) = p*+0@pH+ 0@ 5 p) (2.5)

K=1
with p? = p? = S_, p2. Improving the dispersion relation moves the leadin@?) lattice arte-
facts to some orden. For this purpose it suffices to construct an action withtrotel invariance
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maintained to this order. To see how this works let us brieffgwbs the dispersion relation for
the standard staggered fermion action which is identicelgdg2.1). Expanding this relation up to
terms of ordempy}, u = 1,4 yields

13 1
E2— p2+§ Y api+ :—%aZE“:O (2.6)
=]

If for an improved action the Euclidean propagator is rotaily invariant atﬁ(pﬁ), i.e. terms
~ Zﬁ:l pf, are absent, the low momentum expansioldactorizes into
(Ef - PA)[1+ 0(a%p;, 8°E])] + 0(a'p}) = 0 2.7)

for the branclE; surviving the continuum limit such that the dispersiontieflais ¢'(a?) improved.
Turning now to thermodynamics, the free energy of a freegsteagl fermion gas on the lattice
is given [3] as (for Wilson fermions the sum extends uplto- 1)

Ny /2—1

N3NT% % In p4, (2.8)

whereaps = (17/N;)(2j +1). In terms of the roots of the dispersion relation it can beritésn as

8N, N;/2—1

p
_W% J;) {'”Ap(ﬁ)+igln[sin2(ap4)+m2(ﬁ)]} (2.9)

with obvious generalization to Wilson quarks, see remat&vb&q.(2.3). The important contribu-
tion in the continuum limit is due to thie= 1 term in Eq.(2.9),

fN

N /2-1
Z) In[sin?(aps) + w?(P)] = In [Z%T cost? (NT:EH (2.10)

]J=
and the equality arises from carrying out the sum g\Jdi. Having subtracted the zero temperature
result, the free energy is then obtained, for both stagganeld/Vilson type quarks, as

fr—

(—NraEy)] (2.11)

save terms which vanish exponentially in the continuumtliqi~ 1/a — co.
Suppose now that the dispersion relatiowi@"~2) improved,

Ef = p*+0(@p)™) (2.12)
In this case, the corrections /T start ato’(N; "),
= Pl (2P
= =Npafy = 2 {1+ N (T) ] — F[1+2] (2.13)
By expanding imA one finally arrives at
f~ N3NT Z {In[1+exp(—p/T)] —BA} (2.14)

whereB is given asB = e P/T /(1+ e P/T). Thus, improving the dispersion relation immediately
leads to an improvement of the high temperature limit of &eergy, pressure and energy density.
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3. Staggered type quarks

The Dirac matrix of a general class of staggered actions f@itnion and anti-fermion fields
separated by up to three links is given by

M(xy) = > nu(X) ( quo [S(X+ift,y) = O(x—if1,y)] (3.1)
0 i=T,

VEU j=%2

Within this class one can construct actions that are rotaltip invariant up tog(p*). This can be
achieved with the constraints [5]

Ci0+ 3C3p+6C12 =
Cr0+ 27C30+6C1 2 = 24C: 2 (3.2)

NI

In particular we may set; >, = 0. This yields the familiar Naik-action [6] witl; o = 9/16 and
czo0 = —1/48. In this case the expansion of the dispersion to lowestrergives

PSRN (RS SO VIS (R Sy O
El—p+40{p prk}a+56{p Jrlogpk a4+ ... (3.3)

Another choice is to eliminate the linear three link term @detely, c3 o = 0 to obtainci o = 3/8
andc; 4, = 1/48. Although this action, the p4 action [5] héa?) corrections the (5 pr) terms
are eliminated from the propagator by construction,

a 2D(Ew P = (- ) |1+ 2+ )|+ o) (3.4)

such that the dispersion relationd¥a?) improved, with the expansion

2
. 3) s 1 6la, 1 7 6 ol 4 1o sl.6
Ei= p+40{p prk}a +4536{25p 112prk 84Io Zpk +16562pk a+...

(3.5)
Note that the leading correction is the same as for the Ndikraadhe higher orders are generally
smaller. In the comparison of the dispersion relations fandard, Naik and p4 action, shown in
Figure 1 (left), we have chosen momenta along the z-dinectio
Following the dispersion relations, the deviations from ¢ontinuum of the free energies start
at 0(N;#) for both, Naik and p4 action,

. 1143/ m\* 365/ m\°®
fNaka =1-_—""( = — | — 3.6
/Tss 980 (NT> 77 (NT> " (36
1143/ n\* 73 [/ m\®
P fsg = 1— —— | — —— (= 7
/Tss 980 (Nr> +2079<NT> + (3.7)
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Figure 1: Dispersion relations (left) and free energies (right) fianslard staggered quarks, the Naik and
the p4 action. For the dispersion relations, a momentungalos z-direction has been chosen.

The leading corrections are of course the same for both wegractions, yet, the next to leading
one is considerably smaller in the p4 case. This is also teflén the complete free energies which
are depicted in Figure 1 (right). Due to their improved disfmn relations, the free energies for
Naik and p4 are close to the continuum Stefan-Boltzmanrt iinéady at small temporal lattice
extents, in particular, for p4 the deviations from contimuatN,; = 6 are merely a few per cent.

4. Wilson type quarks

The Dirac matrix of a generic Wilson type action with cougbnconstrained to a hypercube
of size 3 can be written as

4
MOGY) = Y YuPu(X=Y)+A(X=Y) (4.1)
u=1
with

Pu(X=y) = Pa[8(y,x+ 1) = Sy, x— )]+ p2 Y [B(Y, X+ i+ V) — &(y,x— 1+ V)]
Vv
+03 3 [O(Y, X+ i+ U+ P) = S(y,x— i+ V + )]
V,p
+Pa Z B, X+A+V+p+06)—0(y,X—[1+V+p+0)] (4.2)

v,0,6

for the vector terms and

Alx—y) = /\05(y,X)+/\12[5(y,X+ﬂ)+5(y,X—ﬁl)]+/\zZ[5(y,X+f1+\7)+5(V,X—ﬁl+\7)]
Il v
+A3 Z O, X+ [+ V+p)+O(y,x— 1+ V+p)]
i:l,V,ij
+Aq Z O, X+A+V+p+0)+d(y,Xx—+V+p+0)] (4.3)
[17V1p16—
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for the scalar ones. The sums overd, & extend over positive and negative directions and are
mutually orthogonal to each other andto The general action is subject to the contraints

201+ 120, +24p3+16ps = 1
Ao+ 8A1+ 24X+ 3203+ 164, = 0 (4.4)

to reproduce the continuum dispersion relation dor- 0, see also [7]. Examples for this type
of action are the standard Wilson action (including the etovmproved version of it) and the

hypercube truncated perfect action [8, 9], with coefficeas listed in Table 1 for the massless
case.

| | Hypercube| Wilson ||

Hypercube| Wilson |

Ao | 1.852720547 4
p1 | 0.136846794| 1/2 A1 | -0.060757866| -1/2
P2 | 0.032077284 A2 | -0.030036032] O
p3 | 0.011058131 Az | -0.0159676200 O
P4 | 0.004748991 A4 | -0.008426812) O

o O O

Table 1: Coefficientso; andA; for standard Wilson quarks and for the hypercube action.

The resulting dispersion relations are shown in Figure f§) (lmgether with the leading correction
to the continuum

—12p3— 16 13
Ey—p— 2 2‘;? Pa <p3+—p S pﬁ) a’+ ... (4.5)
k=1

where the first constraint from Eq.(4.4) has been exploiMdate that the scalar coefficiends do
not appear in Eq.(4.5). Itis worth mentioning that the cttioms start a’(a?) also in the standard
Wilson case where the action deviates from the continuurmdatra. However, the combination of
couplings constituting the coefficient of thé&-term amounts to +0.167 for standard Wilson but at
-0.024 is considerably smaller for hypercube fermions. IBadfustments of the vector coefficients
pi may easily allow to eliminate theg@(a?) corrections altogether.

Corresponding to the dispersion relation, Eq.(4.5), thdilgy correction to the continuum free
energy starts af’(N;?),

2
fWoPe/ fop =1+ %(pl—lng—lsm) (N—"r> +... (4.6)
This correction is shown in Figure 2 (right), together whie tomplete result. While the curves for
the & (N7 2) correction reflect the opposite sign of the coefficient amddifference in its value of
about a factor 7 between Wilson and hypercube fermionsiritésesting to note that in the Wilson
case the contributions from the subleading terms are largmallN; and only slowly vanish with

rising temporal extent whereas they are negligeable foetoybe fermions.

5. Conclusion

In the Stefan-Boltzmann limit we have generally shown ansequently exemplified for
various staggered and Wilson type fermion discretizatremes that improving the fermion dis-
persion relation to some ordef leads to bulk thermodynamic quantities improved to the same
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Figure 2: Dispersion relations (left) and free energies (right) fanslard Wilson quarks and the hypercube
truncated fixed point action. For the dispersion relatiomaanentum axis of (1,1,1) has been chosen.
Denoted by |.0. the figure also shows the sum of continuumlphginge’(a?) correction to the continuum
behavior. The full results have also been shown in [9]

order in the lattice spacing. This discussion can be caoiea to so-called chiral actions and to
the case of non-vanishing chemical potential [10] and mayige some guidance in constructions
of improved actions.
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