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1. Introduction

Numerical QCD lattice computations of bulk thermodynamic quantities like energy density or
pressure suffer from the fact that the signal decreases proportional to 1/N4

τ . One is therefore forced
to carry out investigations into these quantities at fairlysmall values of the temporal lattice extent
Nτ . At fixed temperatureT ≡ 1/aNτ , this in turn amounts to relying on simulations on rather coarse
lattices. It is therefore important to reduce the discretization effects by means of utilizing improved
actions.

The use of discretization schemes which have been built to improve the Stefan-Boltzmann
limit on the lattice has been observed to also lead to improvement in the interacting case [1].
Moreover, comparisons with alternative, non-lattice approaches as e.g. in [2] become more reliable
if the high temperature limit is under control.

Here, we proof in this limit that fermion actions with a dispersion relation improved toO(an)

also warrant bulk thermodynamic quantities to be affected by lattice artefacts only at the same
order. We further give examples for fermions of the staggered as well as of Wilson type.

2. The general case

The dispersion relationE(~p) is obtained from the zeroes of the denominatorD of the quark
propagator, e.g. in the naive discretization

D(E = ip4,~p) = 0 ⇔
3

∑
k=1

sin2(apµ )−sinh2(aE) = 0 (2.1)

In general,D can be written as a polynomial in sin2(ap4), (in sin2(ap4/2) for Wilson-type fermions),

D(p4,~p) =
p

∑
i=0

Ai(~p)sin2i(ap4) (2.2)

with coefficientsAi(~p). RewritingD in terms of its roots,ωi(~p),

D(k4,~p) = Ap(~p)
p

∏
i=1

[

sin2(ak4)+ ω2
i (~p)

]

(2.3)

(wherek4 = p4 for staggered andk4 = p4/2 for Wilson quarks) immediately gives the dispersion
relation(s)

sinh2(aεi(~p)) = −sin2(ak4) = ω2
i (~p) (2.4)

(with εi = Ei for staggered andεi = Ei/2 for Wilson). AlthoughD is real, the roots can in general
be complex. However, the root which survives the continuum limit, ω1 to be definite, is real.

For both, standard staggered and standard Wilson fermions the dispersion relation receives
O(a2) corrections,

E2(~p) = p2 +O(a2p4)+O(a2
3

∑
k=1

p4
k) (2.5)

with p2 = ~p2 = ∑3
k=1 p2

k. Improving the dispersion relation moves the leadingO(a2) lattice arte-
facts to some ordern. For this purpose it suffices to construct an action with rotational invariance
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maintained to this order. To see how this works let us briefly discuss the dispersion relation for
the standard staggered fermion action which is identical toEq.(2.1). Expanding this relation up to
terms of orderp4

µ ,µ = 1,4 yields

E2− p2 +
1
3

3

∑
k=1

a2p4
k +

1
3

a2E4 = 0 (2.6)

If for an improved action the Euclidean propagator is rotationally invariant atO(p4
µ), i.e. terms

∼ ∑4
µ=1 p4

µ are absent, the low momentum expansion ofD factorizes into

(E2
1 − p2)[1+O(a2p2

k,a
2E2

1)]+O(a4p6
µ) = 0 (2.7)

for the branchE1 surviving the continuum limit such that the dispersion relation isO(a2) improved.
Turning now to thermodynamics, the free energy of a free staggered fermion gas on the lattice

is given [3] as (for Wilson fermions the sum extends up toNτ −1)

f ∼−
Nc

N3
σNτ

∑
~p

Nτ /2−1

∑
j=0

ln[D(p4,~p)] (2.8)

whereap4 = (π/Nτ )(2 j +1). In terms of the roots of the dispersion relation it can be rewritten as

f ∼−
8Nc

N3
σNτ

∑
~p

Nτ/2−1

∑
j=0

{

lnAp(~p)+
p

∑
i=1

ln[sin2(ap4)+ ω2
i (~p)]

}

(2.9)

with obvious generalization to Wilson quarks, see remark below Eq.(2.3). The important contribu-
tion in the continuum limit is due to thei = 1 term in Eq.(2.9),

Nτ /2−1

∑
j=0

ln[sin2(ap4)+ ω2
1(~p)] = ln

[

4
2Nτ

cosh2
(

NτaE1

2

)]

(2.10)

and the equality arises from carrying out the sum overj [4]. Having subtracted the zero temperature
result, the free energy is then obtained, for both staggeredand Wilson type quarks, as

f ∼−
Nc

N3
σNτ

∑
~p

2ln[1+exp(−NτaE1)] (2.11)

save terms which vanish exponentially in the continuum limit Nτ ∼ 1/a→ ∞.
Suppose now that the dispersion relation isO(an−2) improved,

E2
1 = p2 +O(anpn+2

µ ) (2.12)

In this case, the corrections toE1/T start atO(N−n
τ ),

E1

T
= NτaE1 =

p
T

[

1+
1

Nn
τ

( p
T

)n
]

=
p
T

[1+ ∆] (2.13)

By expanding in∆ one finally arrives at

f ∼−
Nc

N3
σNτ

∑
~p

{ln [1+exp(−p/T)]−B∆} (2.14)

whereB is given asB = e−p/T/(1+e−p/T ). Thus, improving the dispersion relation immediately
leads to an improvement of the high temperature limit of freeenergy, pressure and energy density.

3



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
7
)
2
0
0

Improving bulk QCD thermodynamics on the lattice Edwin Laermann

3. Staggered type quarks

The Dirac matrix of a general class of staggered actions withfermion and anti-fermion fields
separated by up to three links is given by

M(x,y) = ∑
µ

ηµ(x)

(

∑
i=1,3

ci,0 [δ (x+ iµ̂ ,y)−δ (x− iµ̂ ,y)] (3.1)

+ ∑
ν 6=µ

∑
j=±2

c1, j [δ (x+ µ̂ + jν̂ ,y)−δ (x− µ̂ + jν̂ ,y)]

)

Within this class one can construct actions that are rotationally invariant up toO(p4). This can be
achieved with the constraints [5]

c1,0 + 3c3,0 +6c1,2 =
1
2

c1,0 +27c3,0 +6c1,2 = 24c1,2 (3.2)

In particular we may setc1,2 ≡ 0. This yields the familiar Naik-action [6] withc1,0 = 9/16 and
c3,0 = −1/48. In this case the expansion of the dispersion to lowest orders gives

E1 = p+
3
40

{

p5−
1
p ∑

k

p6
k

}

a4 +
1
56

{

p7 +
1
p ∑

k

p8
k

}

a6 + ... (3.3)

Another choice is to eliminate the linear three link term completely,c3,0 ≡ 0 to obtainc1,0 = 3/8
andc1,±2 = 1/48. Although this action, the p4 action [5] hasO(a2) corrections theO(∑k p4

k) terms
are eliminated from the propagator by construction,

a−2D(E1,~p) = (E2
1 − p2)

[

1+
a2

3
(E2

1 + p2)

]

+O(a4) (3.4)

such that the dispersion relation isO(a2) improved, with the expansion

E1 = p+
3
40

{

p5−
1
p∑

k

p6
k

}

a4+
1

4536







25p7−112p∑
k

p6
k −84

1
p

(

∑
k

p4
k

)2

+165
1
p ∑

k

p8
k







a6+ ...

(3.5)
Note that the leading correction is the same as for the Naik action, the higher orders are generally
smaller. In the comparison of the dispersion relations for standard, Naik and p4 action, shown in
Figure 1 (left), we have chosen momenta along the z-direction.

Following the dispersion relations, the deviations from the continuum of the free energies start
atO(N−4

τ ) for both, Naik and p4 action,

f Naik/ fSB = 1−
1143
980

(

π
Nτ

)4

−
365
77

(

π
Nτ

)6

+ ... (3.6)

f p4/ fSB = 1−
1143
980

(

π
Nτ

)4

+
73

2079

(

π
Nτ

)6

+ ... (3.7)
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Figure 1: Dispersion relations (left) and free energies (right) for standard staggered quarks, the Naik and
the p4 action. For the dispersion relations, a momentum along the z-direction has been chosen.

The leading corrections are of course the same for both improved actions, yet, the next to leading
one is considerably smaller in the p4 case. This is also reflected in the complete free energies which
are depicted in Figure 1 (right). Due to their improved dispersion relations, the free energies for
Naik and p4 are close to the continuum Stefan-Boltzmann limit already at small temporal lattice
extents, in particular, for p4 the deviations from continuum atNτ = 6 are merely a few per cent.

4. Wilson type quarks

The Dirac matrix of a generic Wilson type action with couplings constrained to a hypercube
of size 34 can be written as

M(x,y) =
4

∑
µ=1

γµρµ(x−y)+ λ (x−y) (4.1)

with

ρµ(x−y) = ρ1[δ (y,x+ µ̂)−δ (y,x− µ̂)]+ρ2∑̂
ν

[δ (y,x+ µ̂ + ν̂)−δ (y,x− µ̂ + ν̂)]

+ρ3 ∑̂
ν,ρ̂

[δ (y,x+ µ̂ + ν̂ + ρ̂)−δ (y,x− µ̂ + ν̂ + ρ̂)]

+ρ4 ∑
ν̂,ρ̂ ,σ̂

[δ (y,x+ µ̂ + ν̂ + ρ̂ + σ̂)−δ (y,x− µ̂ + ν̂ + ρ̂ + σ̂)] (4.2)

for the vector terms and

λ (x−y) = λ0δ (y,x)+ λ1∑̂
µ

[δ (y,x+ µ̂)+ δ (y,x− µ̂)]+λ2 ∑̂
µ,ν̂

[δ (y,x+ µ̂ + ν̂)+ δ (y,x− µ̂ + ν̂)]

+λ3 ∑
µ̂,ν̂ ,ρ̂

[δ (y,x+ µ̂ + ν̂ + ρ̂)+ δ (y,x− µ̂ + ν̂ + ρ̂)]

+λ4 ∑
µ̂,ν̂ ,ρ̂,σ̂

[δ (y,x+ µ̂ + ν̂ + ρ̂ + σ̂)+ δ (y,x− µ̂ + ν̂ + ρ̂ + σ̂)] (4.3)
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for the scalar ones. The sums overν̂ , ρ̂ , σ̂ extend over positive and negative directions and are
mutually orthogonal to each other and toµ̂ . The general action is subject to the contraints

2ρ1 +12ρ2 +24ρ3 +16ρ4 = 1

λ0 +8λ1 +24λ2 +32λ3 +16λ4 = 0 (4.4)

to reproduce the continuum dispersion relation fora → 0, see also [7]. Examples for this type
of action are the standard Wilson action (including the clover improved version of it) and the
hypercube truncated perfect action [8, 9], with coefficients as listed in Table 1 for the massless
case.

Hypercube Wilson Hypercube Wilson

λ0 1.852720547 4
ρ1 0.136846794 1/2 λ1 -0.060757866 -1/2
ρ2 0.032077284 0 λ2 -0.030036032 0
ρ3 0.011058131 0 λ3 -0.015967620 0
ρ4 0.004748991 0 λ4 -0.008426812 0

Table 1: Coefficientsρi andλi for standard Wilson quarks and for the hypercube action.

The resulting dispersion relations are shown in Figure 2 (left), together with the leading correction
to the continuum

E1 = p−
ρ1−12ρ3−16ρ4

3

(

p3 +
1
p

3

∑
k=1

p4
k

)

a2 + ... (4.5)

where the first constraint from Eq.(4.4) has been exploited.Note that the scalar coefficientsλi do
not appear in Eq.(4.5). It is worth mentioning that the corrections start atO(a2) also in the standard
Wilson case where the action deviates from the continuum at ordera. However, the combination of
couplings constituting the coefficient of thea2-term amounts to +0.167 for standard Wilson but at
-0.024 is considerably smaller for hypercube fermions. Small adjustments of the vector coefficients
ρi may easily allow to eliminate theseO(a2) corrections altogether.

Corresponding to the dispersion relation, Eq.(4.5), the leading correction to the continuum free
energy starts atO(N−2

τ ),

f W−type/ fSB= 1+
496
147

(ρ1−12ρ3−16ρ4)

(

π
Nτ

)2

+ ... (4.6)

This correction is shown in Figure 2 (right), together with the complete result. While the curves for
theO(N−2

τ ) correction reflect the opposite sign of the coefficient and the difference in its value of
about a factor 7 between Wilson and hypercube fermions, it isinteresting to note that in the Wilson
case the contributions from the subleading terms are large at smallNτ and only slowly vanish with
rising temporal extent whereas they are negligeable for hypercube fermions.

5. Conclusion

In the Stefan-Boltzmann limit we have generally shown and subsequently exemplified for
various staggered and Wilson type fermion discretization schemes that improving the fermion dis-
persion relation to some orderan leads to bulk thermodynamic quantities improved to the same

6
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Figure 2: Dispersion relations (left) and free energies (right) for standard Wilson quarks and the hypercube
truncated fixed point action. For the dispersion relations amomentum axis of (1,1,1) has been chosen.
Denoted by l.o. the figure also shows the sum of continuum plusleadingO(a2) correction to the continuum
behavior. The full results have also been shown in [9]

order in the lattice spacing. This discussion can be carriedover to so-called chiral actions and to
the case of non-vanishing chemical potential [10] and may provide some guidance in constructions
of improved actions.

Acknowledgments

SS has been supported by the EU under contract no. RII3-CT-2004-506078. FK and EL acknowl-
edge partial support through the BMBF grant 06BI106. The work of FK has been supported by a
contract DE-AC02-98CH10886 with the U.S. Department of Energy.

References

[1] B. Beinlich et al., Eur. Phys. J. C6 (1999) 133.

[2] K. Kajantie et al., Phys. Rev. D67 (2003) 105008; F. Di Renzo et al., JHEP 0607 (2006) 26.

[3] J. Engels et al., Nucl. Phys. B205 (1982) 239.

[4] H.-Th. Elze, K. Kajantie and J. Kapusta, Nucl. Phys. B304(1988) 832.

[5] F. Karsch, U. Heller and B. Sturm, Phys. Rev. D60 (1999) 114502.

[6] S. Naik, Nucl. Phys. B316 (1989) 238.

[7] D.H. Adams, Nucl. Phys. (Proc. Suppl.) 129&130 (2004) 513.

[8] W. Bietenholz and U.-J. Wiese, Nucl. Phys. B464 (1996) 319.

[9] W. Bietenholz et al., Nucl. Phys. (Proc. Suppl.) 53 (1997) 921.

[10] P. Hegde et al., work in progress.

7


