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1. Introduction

It is a common folklore that the chiral phase transition takes place at high temperature and/or
density in Quantum Chromodynamics (QCD). Meson masses are crucially influenced by the chiral
condensate, and thus are very interesting observables in the chiral phase transition region.

It is possible to extract hadron masses quantitatively in the lattice Monte-Carlo (MC) simula-
tions at zero density. However, MC does not work well at high densities because of the notorious
negative sign problem of the Dirac determinant. Therefore it is instructive to investigate high den-
sity matter in the strong coupling lattice QCD (SC-LQCD). In SC-LQCD analyses with a mean
field approximation (MFA), we can derive analytical expressions of the effective potential as a
function of temperature (T ) and chemical potential (µ), and hence we can avoid the sign problem.
The numerical values of physical observables derived analytically in SC-LQCD should be repro-
duced in lattice MC simulations at least in the strong coupling region. From this point of view,
Refs. [1] provides an interesting comparison of strong coupling results in MC and analytic studies.

Chiral phase transitions are governed by the effective potential, which also plays an essential
role to obtain the hadron mass in SC-LQCD. The effective potential at finite temperature and den-
sity has been extensively studied under various conditions [2 – 7]. For example, we have recently
derived analytical expressions of the effective potential as a function of T and µ in SC-LQCD,
including the baryon propagating effects or 1/g2 corrections [7]. On the other hand, while hadron
masses have been studied at zero temperature [6, 8, 9], the expression of meson masses as a func-
tion of T and µ has never been derived before.

In this proceedings, we derive an analytical expression of meson masses as functions of the
chiral condensate, which is a function of T and µ in SC-LQCD for color SU(Nc).

2. A brief summary of meson mass derivation

We start from the action and partition function of lattice QCD with one species of staggered
fermion(χ) in the strong coupling limit, where we omit the pure gauge plaquette terms (∝ 1/g2),

Z =
∫

χ ,χ̄ ,U0,U j

exp
[
−1

2 ∑
x

d

∑
j=1

(−1)x0+···+x j
[
χ̄xU j(x)χx+ ĵ− (h.c)

]−S t
F −m0 ∑

x
Mx)

]
(2.1)

S t
F =

1
2 ∑

x

[
eµ χ̄xU0(x)χx+0̂− e−µ(h.c)

]
, Mx =

Nc

∑
a=1

(χ̄aχa)x . (2.2)

Here m0, U0, U j represent the current quark mass, the temporal and spatial link variables, respec-
tively. We introduce the lattice chemical potential µ following the procedure in Ref. [10].

First we perform the path integral over spatial link variables U j, and keep only the leading
order terms in the 1/d expansion,

Z =
∫

χ ,χ̄ ,U0

exp
[
−S t

F +
∑x, j MxMx+ ĵ

4Nc
−m0 ∑

x
Mx +O(1/

√
d)

]
. (2.3)
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Next we introduce the chiral condensate σ ∝ 〈χχ̄〉 through the bosonization procedure,

Z '
∫

χ ,χ̄ ,U0,σ
exp

[
−1

2 ∑
mn,xy

σmxV−1
M (xy)δmnσny−∑

nx
m(q)

nx Mnx−S t
F

]
, (2.4)

VM(xy) =
1

4Nc

d

∑
j=1

(δx+ ĵ,y +δx− ĵ,y) , m(q)
nx = m0 +σnx , (2.5)

where “m” or “n” denotes the temporal lattice site, which takes an integer value in [1,N]. Now we
can perform the path integral over staggered quarks, and obtain the following effective action of σ
up to a constant,

Z '
∫

Dσ e−Seff[σ ] , Seff[σ ] =
1
2 ∑

mn,xy
σmxV−1

M (xy)δmnσny−∑
x

logRx[σ ] . (2.6)

Integral over χ and U0 generates the interaction term log Rx[σ ], where Rx[σ ] is given as,

Rx[σ ] =
∫

dU0(x)

∣∣∣∣∣∣∣∣∣∣∣∣∣

2m(q)
1,x1c eµ1c e−µU†

0 (x)
−e−µ1c 2m(q)

2,x1c eµ1c 0
. . . . . . . . .

0 −e−µ1c 2m(q)
N−1,x1c eµ1c

−eµU0(x) −e−µ1c 2m(q)
N,x1c

∣∣∣∣∣∣∣∣∣∣∣∣∣

, (2.7)

where 1c represents an Nc×Nc unit matrix, and U0 is given in the temporal gauge as,

U0(x) = diag{eiθ 1(x), · · · ,eiθ Nc (x)} . (2.8)

Periodic and anti-periodic boundary conditions for gluons and fermions are respected in the present
finite T treatment as found in the form of Eq. (2.7), where we find different signs in the upper-right
and the lower-left components.

We decompose the chiral condensates σn(x) to the equilibrium value σ̄ and fluctuations δσn(x),
σn(x) = σ̄ + δσn(x). The equilibrium value σ̄ is determined from the stationary condition of the
effective action,

δSeff[σ ]
δσnx

∣∣∣
σ→σ̄

= σ̄
2Nc

d
− 1

R[σ̄ ]
δRx[σ ]
δσnx

∣∣∣
σ→σ̄

= 0 . (2.9)

The meson mass is defined as the pole of the propagator for δσ , which is obtained from the second
order variation of the effective action (δ 2

σ Seff). The stationary condition Eq. (2.9) ensures that the
first derivative of Rx[σ ] is independent from the space-time point. Thus when we require the null
average fluctuation condition ∑n δσn = 0, the first derivative of Rx[σ ] in δ 2

σ Seff disappears. The
second order variation δ 2

σ Seff is found to be,

δ 2
σ Seff[σ ]

∣∣∣
σ→σ̄

= ∑
mn,xy

δσmx

[
V−1

M (xy)δmn−δxy
R(2)

mn [σ ]
R[σ ]

∣∣∣∣∣
σ→σ̄

]
δσny , R(2)

mn ≡ δ 2Rx

δσmδσn
. (2.10)

It is necessary to evaluate R(2)
mn to obtain meson masses. We derive R(2)

mn at finite T and µ in the
following section, which has not been derived previously.
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3. Evaluation of quark hopping in the temporal direction

We utilize the formulation developed by Damgaard, Kawamoto, Shigemoto [2], Faldt and
Petersson [3], and Nishida [4]. First we reduce the (Nc×N)× (Nc×N) determinant in Eq. (2.7) to
Nc×Nc determinant in the form [3],

Rx =
∫

dU0 det
c

[
XN ⊗1c +(eµ/TU0 + e−µ/TU†

0 )
]

= Rx(XN [σ ],µ) , (3.1)

where the quark hopping kernel XN is a functional of σ . We assume that the number of temporal
lattice sites N is even and its inverse N−1 is identified as the temperature T . Since Rx is a function
of XN , it is enough to evaluate the U0 integral in equilibrium, and this has been done by utilizing the
Vandermonde determinant technique combined with the recursion formula [2, 4]. It is also possible
to perform the U0 integral explicitly by using the one link integral technique [3]. The obtained Rx

reads,

Rx(XN [σ ] = Y +Y−1,µ) =
Y Nc+1−Y−(Nc+1)

Y −Y−1 +2cosh
Ncµ

T
. (3.2)

In this proceedings, the baryonic effects are considered for just a temporal direction, which is
reflected on the second term in Eq (3.2).

Next it is necessary to evaluate the quark hopping kernel XN , which is found to be [3],

XN = B1,··· ,N +B2,··· ,N−1 , B1,··· ,N =

∣∣∣∣∣∣∣∣∣∣∣∣∣

2m(q)
1,x eµ

−e−µ 2m(q)
2,x eµ 0

. . . . . . . . .

0 −e−µ 2m(q)
N−1,x eµ

−e−µ 2m(q)
N,x

∣∣∣∣∣∣∣∣∣∣∣∣∣

. (3.3)

In equilibrium (δσn(x)→ 0, σn(x)→ σ̄ ), recursion relation Bn = 2m(q)Bn−1 + Bn−2 leads to the
equilibrium value of Y and B as,

Ȳ = Y [σ → σ̄ ] = eE/T , (3.4)

B̄n ≡ Bk,··· ,k+n(σ → σ̄) =

{
cosh

[
(n+1)E

]
/coshE (n = even)

sinh
[
(n+1)E

]
/coshE (n = odd)

, (3.5)

where E = sinh−1(m0 + σ̄) denotes the one dimensional quark energy. By substituting Ȳ in Rx, we
get the effective potential from the effective action (Eq. (2.6)),

Feff(σ̄) = Seff(σ̄)/∑
x

=
1
2

2Nc

d
σ̄ 2−T log

[sinh[(Nc +1)E(σ̄)/T ]
sinh[E(σ̄)/T ]

+2cosh
Ncµ

T

]
. (3.6)

This has been obtained also in Ref. [4] and included in the effective potential in Ref. [7]. The
critical values Tc(µ = 0), µc(T = 0) and the tri-critical point Ttcp can be extracted from the effective
potential Eq. (3.6) and have been studied in Ref. [4] in the chiral limit,

Tc(µ = 0) = d(Nc +1)(Nc +2)/
[
6(Nc +3)

]
, µc(T = 0)' 0.55 (3.7)

Ttcp =
[√

225N2
c +20d2(3N2

c +6Nc−4)−15Nc
]
/(20d) . (3.8)
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Finally, it is necessary to evaluate R(2)
mn to obtain the meson mass spectrum(See Eq. (2.10)).

Here, the translational invariance simplifies the calculation. Since the system has translational
invariance, Rx and XN are cyclic invariant for the temporal indices. By using this translational
invariance we obtain,

∂XN

∂σn

∣∣∣∣
σ̄

=
∂XN

∂σN

∣∣∣∣
σ̄

= 2B̄N−1 (3.9)

∂ 2XN

∂σm∂σn

∣∣∣∣
σ̄

=
∂ 2XN

∂σn′∂σN

∣∣∣∣
σ̄

= 4B̄n′−1B̄N−n′−1 (n′ = N−|n−m|) . (3.10)

It is found that Eqs. (3.2), (3.9) and (3.10) lead to,

R(2)
mn

∣∣∣
σ̄

= 4(B̄N−1)2 ∂ 2R
∂X2

N

∣∣∣
σ̄

+4B̄n′−1B̄N−n′−1
∂R

∂XN

∣∣∣
σ̄

, (3.11)

in a straightforward calculation. In equilibrium, we can evaluate (dR/dXN)|σ̄ in the following way,

1
R̄

dR
dXN

∣∣∣
σ̄

=
1
R̄

∂R
∂σn

[∂XN

∂σn

]−1∣∣∣
σ̄

= σ̄
2Nc

d
1

2B̄N−1
, (3.12)

where we used Eq. (2.9) and (3.4) in the final equality. Taking into account the even number of
temporal lattice cite (N =even), and substituting Eq. (3.5) and (3.12) into (3.11), we obtain,

R̄(2)
mn

R̄
=−σ̄

2Nc

d
eiπm′

cosh
[
(N−2m′)E

]

coshE sinh[E/T ]
+

∆R

R̄
(m′ = |n−m|) , (3.13)

where ∆R does not include temporal indices, and here we do not bother to write its explicit form.

4. Meson mass

Now we can explicitly evaluate t he second variation of the effective action (Eq. (2.10)). Sub-
stituting Eq. (3.13) into (2.10), we obtain,

δ 2
σ Seff

∣∣∣
σ̄

= ∑
mn,xy

δσmx

[
V−1

M (xy)δmn +δxyσ̄
2Nc

d
eiπm′

cosh
[
(N−2m′)E

]

coshE sinh[E/T ]

]
δσny , (4.1)

where we ignore the effect of ∆R/R̄ by requiring the null average condition: ∑n δσn = 0. We
perform the Fourier transformation of Eq. (4.1) by using the translational invariance, ∑N

n=1 ≡
∑N−m

m′=1−m → ∑N−1
m′=0 for the second term in Eq. (4.1), and we obtain,

δ 2
σ Seff

∣∣∣
σ̄

= ∑
ω,k

δσω(k)

[
2Nc/d

∑ j cosk j
+

(2Nc/d)σ̄(σ̄ +m0)
cosω +2(σ̄ +m0)2 +1

]
δσω(k) . (4.2)

Here we introduce the prescription proposed in Ref. [9],

(ω,k) = (iM,0)+(δν)π , (4.3)

5
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Figure 1: The µ dependence of meson mass at T = 0.25Tc(µ = 0) (upper-left) and T = 0.75Tc(µ =
0) (upper-right) in the chiral limit. The T dependence of meson mass at µ = 0 (lower-left) and µ =
0.75µc(T = 0) (lower-right) in the chiral limit. Graphs are plotted in the lattice unit.

where (δν) is a “d +1” dimensional vector which takes 0 or 1 and originates from the tastes degrees
of freedom. In this prescription, “M” is regarded as a meson mass. By putting the obtained inverse
propagator for δσω(k) equal to zero, the meson masses are found to be,

±coshMκ(σ̄ ;T,µ) = 2(σ̄ +m0)
(d +κ

d
σ̄ +m0

)
+1 (4.4)

κ ≡
d

∑
j=1

cosδ j ∈ {−d,−d +2, · · · ,d−2,d} . (4.5)

Here, we tentatively take the plus sign to obtain the real number meson mass, and regard taste
effects κ as meson species in the same way as in Ref. [9]. In this scheme with d = 3, “κ =
−3, −1, 1, 3” corresponds to “π, ρ, a1” and “δ” mesons, respectively.

For a small current quark mass m0 ∼ 0, we obtain, Mπ ' 2
√

σ̄m0, which may be regarded
as the PCAC relation. When the temperature T and quark chemical potential µ are given, the
chiral condensate σ̄(T,µ) is obtained from the effective potential Eq. (3.6), then the meson mass
Mκ(σ̄ ;T,µ) is determined by Eq. (4.4). In Fig. 1, we show T and µ dependence of meson masses
in the lattice unit. With a given T lower than the tri-critical point Ttcp (c.f. Eq. (3.8)), the meson
masses except for pion discontinuously drop when µ passes through the critical value µc, where the
phase transition is first order (upper-left panel of Fig. 1). At higher temperatures, Ttcp ≤ T < Tc, the
phase transition is second order and thus the meson masses except for pion quickly but smoothly

6
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decrease to zero when µ approaches to µc (upper-right panel of Fig. 1). When T approaches to its
critical value Tc with a given µ lower than µc, the meson masses quickly and smoothly decrease
to zero, where the phase transition is second order (lower panels of Fig. 1). The T dependence of
meson masses is slightly affected by a given µ in the chiral broken phase (lower panels of Fig. 1).

5. Summary

We have investigated the meson mass spectrum at finite temperature and density by consider-
ing the leading order of the 1/d expansion in the strong coupling limit of lattice QCD. We have
derived an analytical expression of meson masses as functions of the chiral condensate which is a
function of temperature and chemical potential. We have thus explicitly studied the temperature
and chemical potential dependence of meson masses near the critical value. We have confirmed
that the pion mass satisfies the PCAC relation, and that masses of other mesons decrease to zero
very quickly when the chemical potential or temperature approaches to the critical value.
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