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1. Background

The deconfining phase transition of SU(N) (N ≥ 3) gauge theories in 3+ 1 dimensions is
characterized by a low-temperature confined phase, whereZ(N) symmetry is unbroken and quarks
and gluons are bound, and a high-temperature deconfined phase whereZ(N) symmetry is sponta-
neously broken and quarks and gluons are free [1]. Simulations of pure gauge theories indicate that
the transition between the confined and deconfined phases is first order for allN ≥ 3. The global
Z(N) symmetry appears to always break completely in the deconfined phase, with no residual
unbroken subgroup.

The confined phase of pure gauge theories is in a region of low temperature that cannot be
accessed perturbatively. It is therefore useful to generalize the system to restore the confined phase
in a region of high temperatures. We were motivated in part byDavieset al. who generalized
the mechanism of color confinement in a monopole gas to four-dimensional supersymmetric gauge
theories onR3 ×S1 [2]. They showed that monopole contributions to the superpotential led to
an effective action with aZ(N) symmetric minimum, corresponding to the confined phase, for
all values of theS1 circumference (naively analogous to temperature). Therefore it is reasonable
to expect that the addition of a term to the pure gauge theory action which mimics the effects of
monopoles would make the confined phase to accessible at allβ . To this end we extended the
Euclidean action of the pureSU(N) gauge theory with aZ(N) invariant term, the adjoint Polyakov
loop:

−

∫

d3xhA TrAP(~x) = −T
∫ β

0
dt

∫

d3xhA TrAP(~x). (1.1)

HereP(~x) is the Polyakov loop at the spatial location~x, given by the path ordered exponential of
the temporal component of the gauge field.

A heuristic argument suggests that confinement is restored at high temperatures through vari-
ation ofhA. Consider minimization of the effective potential

Ve f f = ∑
R

vRTrRP−ThATrAP. (1.2)

BecauseTrAP = |TrFP|2−1, positivehA favors maximization ofTrAP, which implies|TrFP|> 0.
ThusZ(N) symmetry is broken which suggests this region is in the deconfined phase. NegativehA

favors minimization ofTrAP, implying TrFP = 0, which defines the confined phase. Therefore for
sufficiently negativehA, the confined phase may be restored above the normalhA = 0 deconfine-
ment temperature. In the weak-coupling regime of high temperature we can calculate the effective
potential, pressure, string tensions and ’t Hooft loop surface tensions and examine their behavior
in the restored confined phase resulting from the variation of hA (see also [3]).

2. SU(3) Simulation Results

Our simulations were performed inSU(3) andSU(4) by adding an adjoint Polyakov loop term
to the standard lattice action:

S= SW +∑
~x

HATrAP(~x) (2.1)
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whereSW is the Wilson action. The naive relationship between the variable lattice parameterHA,
and the parameter used in our analytical calculationshA, is HA = hAa3, but there is an additional
unknown multiplicative renormalization factor.
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Figure 1: Phase diagram inSU(3) for an extended
action

Our simulation results forSU(3) show
that increasing positiveHA decreases the de-
confinement temperature as expected, and
for sufficiently negativeHA confinement is
restored at high temperature. However, for
negative HA there is an unexpected new
phase which breaksZ(3) symmetry in a pe-
culiar way.

Figure 1 shows the phase structure in
theβ - HA parameter space ofSU(3) defined
in terms of〈TrFP〉, where projection to the
nearestZ(3) axis is understood. In the region
of negativehA there are 3 distinct phases: the
deconfined phase with〈TrFP〉 > 0, the con-
fined phase with〈TrFP〉 = 0, and the new
"skewed" phase with〈TrFP〉 < 0.

As shown in Figure 1, decreasingHA at
fixed β > 6, we encounter first the decon-

fined phase, then the skewed phase, then the confined phase. Toobtain the locations of the phase
transitions we use the histograms of the fundamental Polyakov loop in combination with plots of
the adjoint Polyakov loop susceptibility. Figure 2 showsSU(3) histograms of the fundamental
Polyakov loop order parameter.
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Figure 2: SU(3) Polyakov loop histograms

Figure 3 shows〈TrFP〉 versusHA. The presence of all three phases is clear. Figure 4 shows
the adjoint Polyakov loop susceptibility. The obvious discontinuity in the order parameter shows
that the transition between the deconfined and skewed phasesis first-order in both graphs. The
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transition between the skewed phase and the confined phase ismuch weaker. It is likely to be first
order as well, but this is not obvious due to the very small changes of the order parameter.

3. SU(3) Theory

To confirm our lattice results we studied the thermodynamicsof the system using an effective
potential adapted from the one-loop free energy density first evaluated by Gross, Pisarski, and Yaffe
[4], and by N. Weiss [5]. Our modified expression is

Ve f f = −2
1
2

TrA

∫

d3k
(2π)3 ∑

n
ln[(ωn−A0)

2 +k2]−hAT TrAP (3.1)

where the sum is over Matsubara frequenciesωn = 2πnT. To locate the phases it is useful to write
this as a function of the eigenvalues of the Polyakov loop:

Ve f f =−2T4
N

∑
j,k=1

(

1−
1
N

δ jk

)[

π2

90
−

1
48π2

∣

∣∆θ jk
∣

∣

2(

2π −
∣

∣∆θ jk
∣

∣

)2
]

−hAT





∣

∣

∣

∣

∣

N

∑
j=1

eiθ j

∣

∣

∣

∣

∣

2

−1





(3.2)

In SU(3), it is sufficient to considerVe f f for the Polyakov loop projected onto the real axis,P =

diag[1,exp(iφ),exp(−iφ)]. Figure 5 shows that the effective potential finds all 3 phases.

4. Comparison of SU(3) theory to simulation

We have calculated the values ofφ that minimizeVe f f in the three phases, then found the
location of the phase transitions in terms of the dimensionless quantityhA/T3. The deconfined-
skewed phase transition is located athA/T3 = −π2/48≃ −0.206. The skewed-confined phase
transition is athA/T3 = −5π2/162≃ −0.305. The ratio of these values is similar to that from
simulations.
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Figure 6: Theoretical prediction for the pressure from
Ve f f normalized by the black body value as a function
of hA.

We also compared values for the pres-
sure determined from the effective potential
to the pressure determined from simulations.
Figure 6 shows the theoretical pressure from
the effective potential. From simulations the
pressure is calculated along a path of con-
stantβ using

p2

T4 −
p1

T4 = N3
t

∫ 2

1
dHA〈TrAP〉 (4.1)

.
Comparing∆p/T4 across the deconfined and
skewed phases we find for theory∆p/T4 =

π2/6 ≃ 1.64 across the deconfined phase,
and ∆p/T4 = 0 across the skewed phase.
In simulations∆p/T4 = 1.64± 0.03 across
the deconfined phase and∆p/T4 = −0.18±
0.07 across the skewed phase.

5. SU(4) Simulation

The case ofSU(4) is somewhat different. In simulations the new phase is partially-confining
instead of skewed. Figure 7 shows theSU(4) histograms of the fundamental Polyakov loop. The
new phase again occurs for negativeHA. We first encounter the deconfined phase, then the partially-
confined phase. Tunneling is observed as we continue decreasing HA in the partially confined
phase. The fluctuations gradually reduce in size, but we are uncertain if there is a transition into
the confined phase.

In the new phase ofSU(4), globalZ(4) symmetry breaks spontaneously toZ(2), a partially-
confined phase. The residualZ(2) symmetry ensures that〈TrFP〉 = 0, but that〈TrRP〉 6= 0 for
representations that transform trivially underZ(2), so quarks are confined, but diquarks are not.
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Figure 7: SU(4) Polyakov loop histograms

TheZ(2) symmetry of the partially-confined phase is clear from the time history of variations of
the real and imaginary parts of the Polyakov loop during a long run in which tunneling is observed,
as shown in Figure 8.

Figure 8: Real and imaginary parts ofSU(4) Polyakov loop versus Monte Carlo time

6. SU(4) Theory

For our analytical calculations inSU(4) we use again the one-loop effective potential to exam-
ine the possible occurrence of four different phases: the confined phase with fullZ(4) symmetry,
the deconfined phase, a partially-confinedZ(2)-invariant phase, and a skewed phase similar to that
of SU(3). However, only the deconfined phase and theZ(2) phase are predicted by our simple
theoretical model. A more complicated model with additional terms should reveal the confined
phase [6].

We compared the phase structure predicted by the one-loop effective potential with our sim-
ulation. Ve f f predicts a first-order transition between the deconfined andZ(2)-invariant phases at
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hA/T3 = −π2/48≃ −0.205617. This is in the same region ofhA as in simulations. Across the
deconfined phase, the theoretical value of∆

(

p/T4
)

= π2/3≃ 3.289. In simulations∆
(

p/T4
)

=

2.21±0.07

7. Discussion and Conclusions

We have considerable evidence, from lattice simulation andfrom theory, for the existence
of new phases of finite temperature gauge theories inSU(3) andSU(4) when aZ(N)-invariant,
adjoint Polyakov loop term is added to the gauge action. InSU(3), confinement is restored at high
temperatures, and the skewed phase was found.

It is interesting to note that Wozaret al. [7], in their study ofSU(3) spin models, observed
a number of interesting new phases. One of these, which they refer to as the anti-centre phase,
appears similar to our skewed phase. The anticenter phase resulted from an action of the form:

Se f f = λFSF + λ15S15 (7.1)

which includes a nearest neighbor coupling term in the 15 representation instead of an adjoint
potential term. We believe that these phases are related.

In the general case ofSU(N), there is good reason to expect a very rich phase structure may
exist. For example, inSU(6), we can consider partial breaking ofZ(6) to eitherZ(2) or Z(3). We
have calculated the string tensions and ’t Hooft loop surface tensions in the restored confined phase
at high temperature [6]. These predictions can be checked inlattice simulations.
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