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1. Introduction

It is widely accepted that QCD undergoes a transition from the hadronic to the so-called
“quark-gluon plasma” phase for large enough temperature, depending on the baryon chemical
potential. Determining the shape and the nature of this transition (or pseudo-critical) line in the
temperature - chemical potential plane is of central interest in cosmology, in astrophysics and in
the phenomenology of heavy ion collisions. The lattice approach, which is the natural tool to
face a non-perturbative problem like this, is plagued, however, by the well-known “sign problem”:
for non-zero chemical potential the QCD fermion determinant becomes complex and the standard
Monte Carlo importance sampling is unfeasible.

Several strategies have been invented to circumvent this problem (for a review, see [1] and [2]).
Here, we concentrate on one of these approaches, the method of analytic continuation, first used in
Refs. [3] and [4]. The idea behind this method is very simple: numerical simulations are performed
at imaginary chemical potential, µ � iµI , for which the fermion determinant is real, then Monte
Carlo determinations are interpolated by a suitable function and finally this function is analytically
continued to real values of µ . This method is rather powerful since temperature and chemical
potential can be varied independently and there is no limitation from increasing lattice size, as in
methods based on reweighting. There is, however, an important drawback: the periodicity of the
partition function and the presence of non-analyticities arising for imaginary values of the chemical
potential [5] limit the region useful for numerical determinations to the strip 0 � µI � T � π � 3. This
implies that the accuracy in the interpolation of the results at imaginary chemical potential has a
strong impact on the extension of the domain of real µ values reachable after analytic continuation.

Although the method is designed to infer the behavior of an observable with the real chemical
potential from the knowledge of its dependence on the imaginary chemical potential, the idea
to analytically continue the pseudo-critical line itself has been extensively applied [6, 7, 8] (see
Ref. [6] for a discussion on the reliability of this application of the method).

A control on the systematics of the method of analytic continuation and possible insights for
its improvement can be achieved by testing it in theories which do not suffer the sign problem, by
direct comparison of the analytic continuation with Monte Carlo results obtained directly at real
µ [4, 9, 10, 11]. In Ref. [11], in particular, a high-precision numerical analysis in SU(2) (or 2-
color QCD) with n f � 8 degenerate staggered fermions has shown that, for temperatures above the
pseudo-critical one at zero chemical potential, the extrapolation to real µ improves considerably
if ratio of polynomials are used instead of simple polynomials in interpolating the behavior with
imaginary µ of some test observables, this validating a proposal formulated in Ref. [12].

In this work we extend the numerical analysis of Ref. [11] to the study of the analytic contin-
uation of the pseudo-critical line. The strategy is the following:

� for several fixed values of the chemical potential, both real and imaginary, we determine the
(pseudo-)critical β ’s by looking for peaks in the susceptibilities of a given observable;

� we interpolate the determinations of the critical β ’s at imaginary chemical potential with an
analytic function of µ , to be then extrapolated to real chemical potential;

� we compare the extrapolation with the determinations of the critical β ’s at real chemical
potential.
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Figure 1: (Left) Phase diagram in the � T � θ � plane according to Ref. [5]. (Right) Tentative phase diagram in
the � T � θ � plane after the inclusion of the chiral pseudo-critical lines.
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Figure 2: Phase diagram in the � β � µ̂I � µ̂R � -space; N is the number of colors, Nτ the extension of the lattice
in the temporal direction.

The aim of this investigation is to verify the possibility to analytically continue the pseudo-critical
line and, in affirmative case, to optimize the choice of the interpolating function to be used. For a
better control of the systematics, we have repeated the outlined strategy for three different observ-
ables (chiral condensate, Polyakov loop, plaquette).

2. Theoretical background

Long ago Roberge and Weiss have shown [5] that the partition function of any SU(N) gauge
theory with non-zero temperature and imaginary chemical potential, µ � iµI , is periodic in θ 1
µI � T with period 2π � N and that the free energy F is a regular function of θ for T � TE , while it is
discontinuous at θ � 2π 2 k 3 1 � 2 4 � N, k � 0 5 1 5 2 5767676 , for T 8 TE , where TE is a characteristic tem-
perature, depending on the theory. The resulting phase diagram in the 2 T 5 θ 4 -plane is given in Fig. 1
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Figure 3: Susceptibility of the chiral condensate at µ̂=0., µ̂ 9 0 : 15i and µ̂ 9 0 : 30. The blue solid lines
represent the result (ant the related error) of the multi-histogram reweighting.

(left), where the vertical lines represent first order transition lines. This structure is compatible with
the µ ;=< µ symmetry, related with CP invariance, and with the Roberge-Weiss periodicity. The
µI -dependence of any observable is completely determined if this observable is known in the strip
0 � θ � π � N. These predictions have been confirmed numerically in several cases, studying the
behaviour of quantities like the Polyakov loop and the chiral condensate [6, 8, 9].

A phase diagram like that in Fig. 1 (left) would imply the absence of any transition along
the T axis in the physical regime of zero chemical potential for any value of N, of n f and of the
quark masses, which cannot be true. Therefore, it is necessary to admit that the phase diagram
in the 2 T 5 θ 4 -plane is more complicated than in Fig. 1 (left). The simplest possibility is given in
Fig. 1 (right), where the added lines generally represent transitions which can be first order, second
order or crossover. The temperature Tc is the pseudo-critical one for the transition at zero chemical
potential. In Fig. 2 the phase diagram of Fig. 1 (right) has been redrawn the 2 β 5 µ̂I 4 -plane, where
β � 2N � g2, µ̂I � aµI is the imaginary chemical potential in lattice units and it has been used the
fact that T � 1 � 2 aNτ 4 , with Nτ the temporal extension of the lattice. In Fig. 2 also the µR-axis has
been included, with a sketch of the continuation of the pseudo-critical line on the 2 β 5 µ̂R 4 -plane.
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Table 1: βcrit as determined from the peak of the susceptibilities of chiral condensate, Polyakov loop and
plaquette.

µ̂ chiral condensate Polyakov loop plaquette
0.30 i 1.5097(33) 1.5023(60) 1.5048(62)
0.20 i 1.4548(42) 1.4355(47) 1.4476(94)
0.15 i 1.4258(51) 1.441(23) 1.418(10)
0.10 i 1.4228(55) 1.4089(63) 1.415(10)
0. 1.4072(35) 1.394(17) 1.4060(45)
0.20 1.3551(91) 1.352(13) 1.356(12)
0.30 1.271(16) 1.267(26) 1.286(15)

Table 2: Parameters of the fit with a polynomial A > Bµ̂2 of the data at imaginary chemical potential; the last
column gives the extrapolation of the pseudo-critical line at the imaginary chemical potential corresponding
to the first RW transition line.

observable A B χ2/d.o.f. βcrit 2 µ̂RW 4
chiral condensate 1.4071(27) < 1.140(50) 0.91 1.5829(81)
Polyakov loop 1.3931(55) < 1.18(10) 0.85 1.575(17)
plaquette 1.4042(39) < 1.104(83) 0.48 1.574(13)

3. Numerical results

We performed numerical simulations on a 163 ? 4 lattice of the SU(2) gauge theory with
n f � 8 degenerate staggered fermions having mass am � 0 6 07, by means of a Hybrid Monte Carlo
algorithm with dt � 0 6 01. Simulations have been performed on the APEmille crate in Bari and on
the computer facilities at the INFN apeNEXT Computing Center in Rome.

The observables we have considered are the chiral condensate, the Polyakov loop and the
plaquette; for each of them we have looked for the peak in the susceptibility for varying β , at
some fixed values of the chemical potential, both real and imaginary. For each observable and for
each fixed value of µ̂ , we have taken a few data points for different β values (statistics @ 20000)
and smoothed out the susceptibility by the multi-histogram extension of the Ferrenberg-Swendsen
reweighting method [13]. The uncertainty on the position of the peaks has been evaluated by the
bootstrap method.

In Table 1 we summarize our preliminary results for the critical β at each value of the chemical
potential we considered. In Fig. 3 we show for illustration purposes the susceptibility of the chiral
condensate at µ̂=0.15i, µ̂=0. and µ̂=0.30.

We have then looked for an interpolation of the data of βcrit for imaginary and zero chemical
potential (i.e. for the first 5 entries in Table 1), and have repeated this procedure for each of the
three observables considered. In all cases we have found that the optimal interpolating function is
a polynomial of the form A 3 Bµ̂2. If different functions are used, such as larger order polynomials
or ratio of polynomials, the fit puts to values compatible with zero all parameters except two of
them, so to reduce the interpolating function to a first order polynomial in µ̂2. The fit results
are summarized in Table 2. We can see that the resulting parameters have a tiny dependence on
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Figure 4: βcrit vs. µ̂2 determined from the susceptibility of chiral condensate, Polyakov loop and plaquette.
The dashed line is the result of a fit with a polynomial A > Bµ̂2 of the data at imaginary chemical potential
(µ̂2 A 0); the black solid lines enclose the boundary of the uncertainty. The blue vertical line gives the
position of the first RW transition line. The point in magenta comes from a determination of the peak of the
susceptibility at β 9 1 : 30, taken from Ref. [11].

the observable considered; moreover, the extrapolation of the pseudo-critical line at the µ̂ value
corresponding to the first Roberge-Weiss transition line, µ̂RW � iπ � 8, is in good agreement with an
independent determination of the endpoint βE [14]. This is a confirmation of the structure of the
phase diagram as sketched in Fig. 1 (right).

The most important point of the present analysis is to test whether the extrapolation of the
pseudo-critical line to real µ̂ agrees or not with the two direct determinations of βcrit available so far
at real µ̂ , i.e. µ̂=0.20 and 0.30. Such comparison is presented in Figs. 4 for each of the observables
considered. There is an overall substantial agreement; in the case of the chiral condensate there
might be a deviation at µ̂=0.30, which calls for a refinement of the numerical analysis.

4. Conclusions and outlook

We have presented preliminary results aimed at studying the possibility of the analytic con-
tinuation of the pseudo-critical line from imaginary to real chemical potential in 2-color QCD.
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This theory is exempt of the sign problem and, therefore, makes possible to compare analytic con-
tinuations from imaginary to real chemical potential with direct determinations at real chemical
potential.

By determining the position of the peaks in the susceptibilities of three observables (chiral
condensate, Polyakov loop, plaquette) for varying the temperature at fixed imaginary chemical
potential, we have interpolated the pseudo-critical line in the temperature - imaginary chemical
potential plane. It turns out that the best interpolation for βcrit 2 µ2 4 is a first order polynomial in
µ2. The extrapolation to real chemical potential of this curve generally agrees with the direct
determinations at real chemical available so far. A larger statistics and an extension of the data set
could reveal possible deviations.
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