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The XXV International Symposium on Lattice Field Theory
July 30-4 August 2007
Regensburg, Germany

*Speaker.

(© Copyright owned by the author(s) under the terms of the Cre@dmmons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



QCD plasma instability Kari Rummukainen

@ (b)

Figure 1: The longitudinal expansion of the collision volume makessittitial parton momentum distribu-
tion (a) squeezed along the plane perpendicular to thesmmiliaxis (b).

1. Introduction

One of the most striking results from the heavy ion collision experiments aCRdthe rapid
thermalisation of the plasma; the thermalisation appears to occur indibfi@/c after the collision
[1]. At sufficiently large collision energy the QCD coupling is small and péxtion theory should
be applicable. However, it turns out that the perturbative processasot alone explain rapid
thermalisation [2, 3]. It has been argued that the strongly non-equilibnitial conditions may
lead to exponential growth of certain long wavelength modes of the plasmkasma instability
[4]. These growing modes might play a significant role in the thermalisationeopldsma. The
plasma instability arises because the plasma initially expands predominantly aéoogllikion
axis ¢ direction), and the momentum distribution of the produced partons becorisedrapic:
the momentum distribution becomes much smaller alagis direction than along the transverse
directions, no matter what the initial distribution of the partons was (Fig. 1¢. ifiitial momenta
of the partons is of order of few GeV (which is the saturation scale of the original nuclei in color
glass condensate models), which we denote as the “hard” scale.

The hard partons will interact with the soft gauge fields; assuming thabttigetds have small
initial amplitude the non-abelian nature of the fields can be ignored. In thistbasanisotropic
parton momentum distribution causes the soft fields to become unstable dlgaigsneration of
X andy -direction magnetic fields: the magnetic fields focus the current carriedebyations by
amplifying the inhomgeneities in it, which in turn leads to increasing magnetic fields.l8ads to
exponential increase in the magnitude of the magnetic fields, analogouslyWethel instability
in electromagnetic plasmas (Fig. 2). However, for the case of QCD thentusrmostly carried by
saturation scale partons, which are mostly hard gluons.

The growth in the small-field regime happens only in a certain range of waters§depend-
ing on the degree of anisotropy in the hard parton distribution) and it is maxtrealparticular
wave vectork,, oriented along-direction. In QED the growth can continue until the magnitude
of the gauge field reache®\~ pnarg, When this happens the hard charged particles are deflected to
random directions and their distribution becomes isotropic. However, in @€ield equations
become non-linear at much smaller magnitgée ~ k, (or B® ~ g?k%), becaus&, < pharg Thus,
the central question is what happens to the unstable growth when the maguiittiee chromo-
magnetic fields reaches this “non-abelian” value. In Ref. [5] it was esiggl that the growth could
persist beyond the non-abelian value if the system “abelianises,” i.econes essentially dom-
inated by only one color degree of freedom. Thus, as the fields contnowengy the distribution
can isotropize through the mechanism described above.
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Figure2: The Weibel instability in the electromagnetic plasma. Arsshow the electric current, circles the
magnetic flux perpendicular to the plane. The magnetic figigldies the inhomogeneities in the current,
which in turn amplifies the magnetic fields.

Because of the large amplitude of the chrmomagnetic fields the problem is ran-dind non-
perturbative. The cleanest way to approach the problem is to perfahiime evolution on the
lattice using so-called “hard loop approximation”: the infrared modes assick chromomagnetic
fields, and the hard partons are treated as a classical charged partiget on the soft field
background. This approximation is justified because we will be dealing witfe laccupation
numbers for the soft fields, and the expansion renders the hard pdisitibution dilute. We also
consider only non-expanding systems with fixed anisotropic hard partiaieemioim distributions
in order to focus on the effects of the anisotropy. Physically this cooreggpto sufficiently large
times where the expansion rate is parametrically small compared to the ratemteskwith the
instability.

This approach has previously been applied to 1+1 -dimensional casehfgE it was ob-
served that the fields indeed continue to grow in the non-linear regime. \ldoy&2-1 dimensional
simulations with moderate anisotropies have indicated that the instabilities arehgdeas the
non-linearities become important [7, 8]. In this work we shall study considg stronger mo-
mentum anisotropies than above, together with large lattice volumes and smalldptitiag. A
detailed report of the results can be found in [9]. Strong anisotropéealso studied in Ref. [10],
but with initial conditions not leading to further exponential growth.

2. Hard Loop effective theory

The hard modes are described as on-shell particles moving in softroackbfields, with a
distribution function

fhard% P) = F(P) +A2F2(x, p) + ... (2.1)

where the anisotropic gauge singlet pfa(rp) we assume to be constant in space and time,f&nd
describes fluctuations in the current carried by the particles. The systelwes according to the
Yang-Mills-Vlasov equations of motion

L 0f

(DuFHY)2 Jhard_g/v % DN oWl S5 =0, (2.2)
wherev = (1, p/p). Defining
a — ’ dpp2 a
WA(x,v) = 41g 0/ G 00P) (2.3)
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Figure 3: Anisotropic hard particle distributions used in this worbgether with the distribution used by
Arnold, Moore and Yaffe [7]. The distributions are plottedithat the relative number of particles moving to
directionv is proportional to the length of the radial vector from thetee of the plot.

we can integrate the equations of motion oy@r obtaining
dQ
(D, FHV)2 / YVWW2, (v-DW)? = mgvHFa (2.4)

Here the vectot' (v) characterises the anisotropic singlet part of the hard distribidtion

n%U‘(V)——4ngz/dppzdf(pv). (2.5)

2m3 dp
O(H) p

For thermal distributiorf becomes isotropic, and we would obt&n= v andmy = Mpepye the
Debye mass of the thermal plasma. We note thais the only dimensionful parameter in the
problem.

The equations of motion 2.4 are discretised on the lattice. The currentccayrithe hard
particles is described by th#2(x, v)-fields. These are quite expensive to handle, because they live
on manifoldR® x S°. We treat these by expanding the distributions in spherical harmonics:

WA(x, V) = ;Wmmm f(p) = ; f(P)Yeo(V), (2.6)

where/ = 0...Lmax the cut-off in spherical harmonics expansion. Thus, at each/\§tdas
(Lmax+ 1)? real degrees of freedom. This approach has been also used ifReif®] to study
the plasma instablity. Originally, this method was successfully applied to the didoutd the
sphaleron rate in hot SU(2) gauge theory on the lattice [11].

For simplicity, we are using SU(2) gauge group in our analysis. We présemesults using
4 different values for the anisotropy of tte both weaker and much stronger than used in [7].
Each distribution is characterised by the maximal spherical harmonic ineelxtusparametrisé_,
Lasym= 2, 4, 14 and 28l(asym < Lmax). For each value dof 3symwe approximately maximised the
possible asymmetry of the distribution; the motivation for this is that this choicaldmainimise
the requiredLnax cutoff. The anisotropic distributions are shown in Fig. 3. The degreeef th
anisotropy is characterised by thrisotropy parameten? = 3(v2) /(v?); for the distributions here
this isr)2 = 0.6, 0.4, 0.086 and 0.022 fbgsym= 2, 4, 14 and 28.
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Figure 4. Growth of the energy with small (left) anisotropiysym= 4 and large (right) anisotropyasym=
28. In both cases the energy grows until the magnitude of tbe&igg magnetic field reaches the value
where non-abelian effects become significaBft;~ (k*)2. With strong anisotropy, the growth continues
until regulated by the lattice cutoff.

In our simulations we are using very large lattice volumes (up to’240d vary the lattice
spacing by more than order of magnitude. Theu-cutoff is up to 48. In general, the infinite
volume and continuum limits are under control; for details, see [9].

3. Resaults

In Fig. 4 we show the growth of the soft field energy density at small amg lanisotropy,
measured at different lattice spacings. Initially the soft fields have sméiwbise fluctuations.
In both cases the instability causes exponential growth of energy dentlity imear (weak field)
region. However, when the field evolution becomes non-linear (showertisal lines), the growth
is rapidly quenched at weak anisotropy, independent of the lattice gpals is in accord with
the results of Ref. [7].

However, at strong anisotropy the growth continues in the non-lineaneegnd the smaller
the lattice spacing is, the further the growth persists. The cutoff is due to latito#f, as can
be seen in Fig. 5: here we show the chromomagnetic field energy densitalasdiuration as a
function of the lattice spacing. The saturation energy is well describegpaser law of the lattice
spacing.

Thus, the results clearly indicate that unstable growth is possible in the rear-liagime.
What field modes do grow here? We study this by fixing to Coulomb gauge aadunieg the
occupation numbers of the gauge fiefdk) O |k|A(k). The evolution of the occupation numbers
at large anisotropy is shown in Fig. 6. In the linear (early) regime the growtlrk, ~ my is
clearly visible. However, when the system becomes non-lineéfla) ~ 1, the growth ak. is
completely quenched, but(k) at higher wave numbers shoots rapidly up. The final occupation
number distribution is very close to the thermal one. Thus, the growth meohapupears to
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Figure 5: Saturation magnetic field energy as a function of the latijz@cing at large anisotropies. The red
hashed area is forbidden because energy density therelarg@ato be supported by the lattice.

be very different from the abelianisation proposed in [5]. We havelatthis behaviour using
various gauge invariant measuremehtsénsitive operators, cooling), with fully consistent results,
see Ref. [9]. Unstable growth in the non-linear regime has also beerveldsie Ref. [12], but using
very different methodology.

In summary, we observe clear signal of rapid soft field energy growtheimon-linear (large
magnitude) regime when the hard particle distribution is strongly anisotrogjgesting possible
role in the thermalisation of the plasma in heavy ion collision experiments. Howeemecha-
nism through which the growth proceeds is still unknown and under fustoely. There are also
important caveats: perhaps most significantly, the initial conditions in the caperted here all
have small magnitude soft fields. When the magnitude of the initial fields is ireztehe non-
linear growth is reduced [9, 10].
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Figure 6: Coulomb gauge power spectrum (occupation number) as a@daratttime for strong anisotropy.
The spectra are plotted at time intervalsvf= 3.6/mg, with the initial state at bottom, and the final state
near the top.
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