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1. Motivation

Lattice simulations suggest that the chiral phase transition and deconfinement phase transition
appear at the same temperature. It is believed that there is a connection between both phase tran-
sitions. While for the chiral phase transition we have a well established picture of the symmetry
breaking mechanism the picture of the deconfinement phase transition remains unclear. Although
there has been much progress in the last years the final link connecting both phase transitions is
still missing.

The order parameter of the chiral phase transition is the chiral condensate 〈q̄q〉. Banks and
Casher [1] related the chiral condensate to the eigenvalue densityρ of the Dirac operator near zero,

〈q̄q〉 = −πρ(λ = 0). (1.1)

Recently, Gattringer [2] established a formula which relates the eigenvaluesof the Dirac operator to
the Polyakov loopP, the order parameter of the deconfinement phase transition in the quenched ap-
proximation. This relation provides a natural link between the chiral condensate and the Polyakov
loop via the eigenvalues of the Dirac operator. The hope is to obtain some insight into how both
phase transitions are connected.

After a short introduction we will discuss several aspects of this new relation between the
Polyakov loop and the eigenvalues, in particular we focus on the volume scaling and the continuum
limit. We will present numerical results for both quenched and dynamical QCDand will also
compare to the free case.

2. Introduction

Starting point of our discussion are the eigenvaluesλ of the massless staggered Dirac operator,
/DΨ = ±iλΨ with λ real > 0. The massless staggered Dirac operator is defined by

/Dxy =
1
2

4

∑
µ=1

[

ηxµU†
xµ ·δ(x+µ̂),y −η(x−µ̂)µU(x−µ̂)µ ·δ(x−µ̂),y

]

, (2.1)

whereηxµ is the usual staggered phase factor andUxµ are the link variables. Note that we use
periodic boundary conditions in all four directions for the calculation of theeigenvalues. The
Polyakov loop is defined byP = 1

Nc N3
s

∑~n Trc

[

∏Nt
n4=1U4(~n,n4)

]

and can be expressed in terms of
the eigenvalues in the following way [2],

P = iNt
22Nt

3Nt N3
s
∑

i

{

1·λ Nt
i,1 + z ·λ Nt

i,z∗ + z∗ ·λ Nt
i,z

}

. (2.2)

Ns andNt is the spatial and temporal extension, respectively, and Z3 = {1,z,z∗}. Note thatNt has
to be even for staggered fermions. The sum overi in Eq. 2.2 is meant to sum over all eigenvalues
λi,X , whereλi,X stands for the eigenvalues calculated on a given gauge configuration which is Z3–
rotated byX ∈ Z3. To be less confusing, for a given gauge configuration we generate all three
Z3–rotated gauge configurations and calculate all eigenvalues of the Dirac operator for each of
the three configurations. The Polyakov loop can then be expressed as asum over all eigenvalues
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Figure 1: On the left hand side we plottedP(λ ) in the complex plane for a typical gauge configuration
at T > Tc for Nt = 4. The right hand side shows a sketch of the corresponding eigenvalues in the real and
complex sector ofP.

calculated on all three rotated gauge configurations, Eq. 2.2. By looking at Eq. 2.2 one immediately
may ask what part of the eigenvalue spectrum contributes most to the Polyakov loop. To answer
this question one introduces the following cumulative sum,

P(λ ) = iNt
22Nt

3Nt N3
s

∑
λi,X <λ

{

1·λ Nt
i,1 + z ·λ Nt

i,z∗ + z∗ ·λ Nt
i,z

}

, (2.3)

where we sum over all eigenvalues up to a certain (maximal) valueλ . Let us briefly make some
comments on this formula before discussing an example. Note that the sector where the Polyakov
loop sits for a given configuration (atT > Tc) is solely determined by multiplying theλi,X ’s with the
appropriateZ3–factors. Let us assume for the moment that the gauge configuration corresponding
to λi,1 hasP in the real sector. Remember that the two complex sectors ofP are physically equiv-
alent. Therefore, the eigenvalues in the complex sectors of the Polyakov loop are approximately
the same,λi,z ≈ λi,z∗ . Making use of this we obtain for Eq. 2.2 the following approximate relation,
P(λ ) ∼ ∑λi,X <λ (λ Nt

i,real − λ Nt
i,complex). This relation illustrates the fact thatP(λ ) is built up by the

”response” of the eigenvalues on the different Z3 sectors. As an example we have plottedP(λ ) for
a typical gauge configuration in the complex plane on the left hand side of figure 1. On the right
hand side we plotted a sketch of the corresponding eigenvalues calculatedin the real and complex
sector of the Polyakov loop. We observe that for small eigenvalues the complex sector dominates.
By looking at our previously derived relation we see that this results in negative values ofP(λ )

while for large eigenvalues it is the other way round. This shows that the change of the eigenvalues
with respect to the different sectors of the Polyakov loop is crucial.

Finally, we perform the ensemble average on the absolute value ofP(λ ),

〈|P(λ )|〉 =

〈∣

∣

∣

∣

∣

iNt
22Nt

3Nt N3
s

∑
λi,X <λ

{

1·λ Nt
i,1 + z ·λ Nt

i,z∗ + z∗ ·λ Nt
i,z

}

∣

∣

∣

∣

∣

〉

. (2.4)

This is the object we will study for the rest of our discussion. At this point, let us draw the reader’s
attention to Refs. [3 – 5] were similar investigations has been performed usingstaggered and Wilson
fermions.
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Figure 2: Results for〈|P(λ )|〉 for our quenched configurations. The upper (lower) plots correspond to
T > Tc (T < Tc). The plots on the left hand side illustrate the volume dependence, the plots on the right hand
side are rescaled such that〈|P(λmax)|〉 is the same for all three volumes. In the later case we observethat for
eachβ all three curves lie above each other telling us that〈|P(λ )|〉 has the same volume scaling thanP.

3. Data

In this section we present several numerical results for〈|P(λ )|〉. We start with results for the
quenched case where we have used standard Wilson gauge action. Thestatistic varies from∼ 10
configurations for the largest lattice 84 up to∼ 100 configurations for the smallest lattice. The
eigenvalues were calculated on a single work station using the ARPACK library[6].

Let us first take a look at the plot on the upper left side of figure 2 whereT > Tc and the
Polyakov loop is finite. What we notice right away is that the main contribution to the Polyakov
loop comes from the large eigenvalues which is somewhat surprising since the physically relevant
part of the spectrum should be the infrared. We will comment on this later on.Another surprising
observation is the dip of the curves atλ ≈ 1.7−1.8. Naively, one might expect that the cumulative
sum〈|P(λ )|〉 is a monotonically increasing function. However, by looking at figure 1 this behavior
becomes clear. The dip in〈|P(λ )|〉 (curves in the upper left plot of figure 2) corresponds to the
region whereP(λ ) (see figure 1) passes zero, the bump in the curves atλ ≈ 1.4 corresponds to the
region whereP(λ ) takes its negative values. This structure seems to be quite interesting and one
may ask whether it will survive the infinite volume and the continuum limit.
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Figure 3: The upper plots show the behavior of〈|P(λ )|〉 as we decrease the lattice spacinga at fixed
T ≈ 1.2Tc. The plot on the right hand side is plotted in physical units.The lower plot shows〈|P(λ )|〉 in the
free case for the same values ofNt at quite large spatial volume.

In figure 2 we illustrate the volume dependence of〈|P(λ )|〉. On the upper plots we show
results for three volumes 43, 63, 83 with Nt = 4 at a temperature slightly aboveTc. The plot on the
upper right hand side shows rescaled curves where we have fixed〈|P(λ )|〉 = 〈|P83×4|〉 at λ = λmax

for all three volumes. Remember thatP(λmax) is just the ordinary Polyakov loopP. Beside the
curve corresponding to the smallest volume, which shows small deviations, the curves lie above
each other. This observation tells one that forT > Tc (for sufficiently large volumes)〈|P(λ )|〉 has
the same volume scaling than the Polyakov loop itself. This in turn means that the structure will
survive the infinite volume limit.

For T < Tc the situation is similar. On the lower left hand side of figure 2 we plotted〈|P(λ )|〉

for the same three volumes. The lower right plot shows the correspondingrescaled curves where we
again fixed〈|P(λmax)|〉 = 〈|P83×4|〉. Again, the curves lie above each other showing that〈|P(λ )|〉

scales like the Polyakov loop also belowTc. Because belowTc the Polyakov loop vanishes in the
infinite volume limit we find that also〈|P(λ )|〉 will vanish in this limit. So in this case the structure
does not survive the infinite volume limit. Note that knowing the volume dependence of〈|P(λ )|〉

will keep the computational costs significantly lower because one do not have to perform expensive
computations on large volume lattices.
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Figure 4: We plotted〈|P(λ )|〉 using dynamical (β = 3.26,3.36) and quenched (β = 5.4,5.8) configurations.
The dynamical configurations were generated with massesmq=0.0065 andms=0.065. The temperature in
the dynamical case differs slightly from the quenched one.

Let us now look at how〈|P(λ )|〉 behaves as the lattice spacinga → 0. Since forT < Tc

〈|P(λ )|〉 vanishes in the infinite volume limit anyway we will discuss only results forT > Tc. The
upper plots in figure 3 illustrate our results forNt = 4,6,8 at fixedT ≈ 1.2Tc plotted againstλ in
lattice and physical units. Let us focus on the upper left plot. We find that for Nt = 6 there is a
bump and a dip in the curve similar to that in the curve forNt = 4. ForNt = 8 we also observe
a large bump but because in this case the statistic is quite limited and the spatial volumeis rather
small the signal is quite noisy. We notice that, as we go to smaller lattice spacing, thestructures
in the curves move towards the ultraviolet (UV) part of the eigenvalue spectrum and the Polyakov
loop obtains its final value more from the very end of the UV part of the spectrum.

Let us compare these results to the free case where an analytical expression for the eigenvalues
is known. The lower plot in figure 3 shows our results in the free case forthe same three values of
Nt at quite large spatial volume. We find that the shape as well as the position of the bumps and
dips of the curves are surprisingly similar to the corresponding results of the quenched data (upper
left plot). This leads to the following conclusion. As we approach the continuum limit 〈|P(λ )|〉 at
small values ofλ is essentially zero. At somewhat large eigenvalues〈|P(λ )|〉 starts to show wild
fluctuations which cancel out at the very end of the UV part of the eigenvalue spectrum where the
Polyakov loop obtains its final value.

We remark that it might be not too surprising that the Polyakov loop is dominatedby the UV
part of the eigenvalue spectrum as the Polyakov loop is related to the propagation of an infinitely
heavy quark. By looking at the quark propagator in the spectral representation,

S(x,y) = ∑
λ

ψλ (x)ψ†
λ (y)

λ + im
, (3.1)

whereψλ (x) are the normalized eigenvectors of the Dirac operator, we note that the eigenmodes
under the sum are weighted by(λ + im)−1. For a very heavy quark (asm → ∞) the relative weight
of each eigenmode becomes approximately the same. Therefore, UV eigenmodes can dominate the
propagation of an infinitely heavy quark, i.e. the Polyakov loop.

6



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
7
)
2
2
2

The Polyakov Loop and the Eigenvalues of the Dirac Operator Wolfgang Söldner

Finally, we compare the quenched results to dynamical results usingp4 f at3 fermions with
improved gauge action and quark massesmq=0.0065 andms=0.065, see Ref. [7]. On the left (right)
hand side of figure 4 we plotted〈|P(λ )|〉 for T > Tc (T < Tc). Surprisingly, there is no qualitative
difference in the behavior of〈|P(λ )|〉 in the dynamical case.

4. Summary

In this work we have studied the connection between the Polyakov loop and the eigenvalues of
the Dirac operator using〈|P(λ )|〉. We have focused on the volume dependence and the continuum
limit. We have found that the dominant contribution to the Polyakov loop comes from the very
end of the UV part of the eigenvalue spectrum. We also compared our results to the free case. A
comparison between full QCD and quenched QCD seems to show no qualitative difference.

Our findings suggest that the dependence of the eigenvalues on the different Z3 sectors of the
Polyakov loop seems to be crucial. Aiming at the connection between confinement and chiral sym-
metry breaking our findings can be concluded in the following picture. Above Tc the eigenvalues
λ show a strong dependence on the different sectors of the Polyakov loop resulting in wild fluctu-
ations in〈|P(λ )|〉. These fluctuations cancel out in a way that the Polyakov loop obtains its finite
value from the very end of the UV spectrum. At the same time, since the chiral condensate is zero
aboveTc, the infrared (IR) part of the spectrum shows a vanishing density of eigenvalues.

Below Tc the dependence of the eigenvalues on the Polyakov loop sectors vanishes in the
infinite volume limit which leads to a vanishing〈|P(λ )|〉. In particular〈|P(λ )|〉 vanishes at the UV
leading to a Polyakov loop〈|P|〉 = 0. At the same time, the eigenvalue density at the IR part of the
spectrum becomes finite since chiral symmetry is broken.
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