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We simulate 3-flavour lattice QCD at finite quark-number chemical potential µ in the phase-
quenched approximation, close to the finite temperature transition. Working close to the critical
quark mass, we find no evidence for the expected critical endpoint at small µ . We are perform-
ing further simulations aimed at calculating the equation-of-state of this theory outside of the
superfluid domain, where its phase structure is expected to mimic the full theory.
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1. Introduction

QCD at finite chemical potential µ has a complex fermion determinant, which prevents direct
application of the standard simulation methods of lattice QCD. We adopt the phase-quenched ap-
proximation, where we replace the fermion determinant by its magnitude, which allows the use of
standard simulation methods. Outside of the superfluid phase in the (T,µ) plane, it is likely that
the phase structures of full and phase-quenched QCD are the same. We use exact RHMC simula-
tions [1], employing a speculative lower bound to the spectrum of the Dirac operator to enable the
required use of rational approximations [2].

We simulate 3-flavour lattice QCD on 83 × 4, 123 × 4 and 163 × 4 lattices for masses near to
the critical mass mc at µ = 0, for temperatures close to the transition temperature from hadronic
matter to a quark-gluon plasma. If the critical mass increases with increasing µ , then for masses
just above mc(0) we would find a critical endpoint at m = mc(µ) for small µ . However, as our
simulations indicate, mc decreases with increasing µ and no critical endpoint is found for small µ
[3]. We introduce µI = 2µ , which has the interpretation of an isospin chemical potential (at least
for even numbers of flavours).

We are now simulating this same 3-flavour lattice QCD for a range of µ and β values outside
the superfluid phase, in order to calculate the equation-of-state for phase-quenched QCD.

2. Simulations and results

The nature of the transition is best determined on finite lattices using the 4th-order Binder
cumulant for the magnetic order parameter. Since, at finite quark mass, we do not know this order
parameter, we use the chiral condensate, introducing (hopefully small) finite size effects. The
Binder cumulant for any observable X is defined by [4]

B4(X) =
〈(X −〈X〉)4〉

〈(X −〈X〉)2〉2 . (2.1)

If there is a critical endpoint at small µI for m > mc(0), then the Binder cumulant should decrease
from its crossover value B4 = 3, passing through the Ising value B4 = 1.604(1) at the endpoint, and
falling towards its first-order value B4 = 1 as µI is increased. Small µI means µI small enough to
lie outside of the superfluid phase. For T = 0, this means µI < mπ .

Since, as determined in these simulations, mc(µI = 0) = 0.0265(3), we perform simulations
at quark mass m = 0.02, m = 0.025, m = 0.03 and m = 0.035. At the 3 larger masses we simulate
at µI = 0, µI = 0.2, µI = 0.3, while for m = 0.02 we only simulate at µI = 0. On the 123×4 lattice
where we have the highest statistics, we generate 300,000 trajectories at each of 4 β values close
to βc (the transition value), and use Ferrenberg-Swendsen reweighting [5] to continue to βc, taken
as the β which minimizes B4(ψ̄ψ). Five noisy estimators of ψ̄ψ per trajectory are used to obtain
an unbiased estimator for B4.

Figure 1 shows these Binder cumulants as functions of µI for m = 0.03 on 83 × 4, 123 × 4
and 163 × 4 lattices. Rather than decrease with increasing µI , the curves for the larger lattices
show a modest increase with increasing µI , and hence no sign of a critical endpoint. The graphs for
m = 0.035 are similar, except that we do not have ‘data’ on 163×4 lattices. At m = 0.025, although
there is a suggestion of such an increase, but the ‘data’ is consistent with no µI dependence.
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Figure 1: Binder cumulants at T = Tc as a functions of µ2
I at m = 0.030.

Figure 2: Binder cumulants at T = Tc as a functions of m at µI = 0.2.
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It is instructive to examine the behaviour of B4 as functions of m at fixed µI for evidence of
a critical point in the universality class of the 3-dimensional Ising model. We find that for each of
our 3 µI values the curves for the 83 × 4 and 123 × 4 lattices cross very close to the Ising value.
Not only does this indicate that the critical point belongs to the Ising universality class, but also
suggests that using ψ̄ψ as the magnetic order parameter is a reasonable choice. Figure 2 shows
B4 as functions of m for µI = 0.2. Estimating the position of the critical points as the values of m
where the 123 ×4 curves achieve their Ising value gives: mc(0) = 0.0265(3), mc(0.2) = 0.0259(5)

and mc(0.3) = 0.0256(4), i.e. mc(µI) is a slowly decreasing function of µI .
From the same ‘data’ we have also calculated the chiral susceptibility

χψ̄ψ =
V
T
〈〈ψ̄ψ2〉−〈ψ̄ψ〉2〉 (2.2)

where the ψ̄ψs on the right-hand side are lattice averaged quantities. Finite size scaling at the
critical point predicts that

χψ̄ψ(L,Tc) = L
γ
ν χ̃. (2.3)

Hence if we plot L− γ
ν χψ̄ψ(L,Tc) as functions of m for different Ls, the curves should intersect at

the critical point. In figure 3 we plot this quantity for µI = 0.2, and note that curves for 83 ×4 and
123 × 4 lattices would intersect between m = 0.025 and m = 0.03 which is where we found the
critical point from the Binder cumulants. Similar results obtain for µI = 0 and µI = 0.3.

Figure 3: Finite size scaling for the peak of the chiral susceptibilities at µI = 0.2

3. Equation of state

The equation-of-state (EOS) expresses the pressure p, the entropy density s and the energy
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density ε as functions of temperature T and µI . (Calculations of the equation of state for QCD at
finite T and µ have been performed for example in [6] and [7].) The pressure p is simply related
to the partition function through:

p =
T
V

lnZ(T,µI). (3.1)

However, we do not actually measure the partition function Z in our simulations, only observables.
Z(T,0) can be calculated by numerically integrating

d lnZ
dβ

= 〈6V
T

Sg〉 (3.2)

where Sg is the plaquette action. We can then numerically integrate

d lnZ
dµI

= 〈
N f

8
V
T

j3
0〉 (3.3)

at constant β , where N f

8 j3
0 is the the isospin density, to obtain Z(T,µI). Figure 4 shows the µI

dependence of j3
0 at fixed β values. For the upper 2 β s we also have ‘data’ for larger µIs, up to

saturation which occurs for µI ≈ 2.

Figure 4: Isospin density as functions of µI at fixed β values

To obtain T in physical units requires knowledge of the running of the coupling constant,
β = β (a). This is determined at µI = 0. Once this running of the coupling constant is known, this
can be used to determine ε , since

ε =
T 2

V
∂

∂T
lnZ. (3.4)
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4. Discussion and conclusions

For µ small enough or T large enough that phase-quenched QCD is in its normal rather than
its superfluid phase, full QCD and phase-quenched QCD are expected to have the same phase
structure. Lattice simulations indicate that the fluctuations of the phase of the fermion determinant,
on lattices large enough to observe this phase structure, are sufficiently small for this to be so [8].
Random matrix calculations in the epsilon regime agree with this conclusion [9].

For 3-flavour lattice QCD our phase-quenched simulations show no evidence for a critical
endpoint in the range of m and µ values where it would have been expected if it were associated
with the critical point observed when the quark mass is varied. This is in agreement with the results
of de Forcrand and Philipsen obtained using analytic continuation methods from simulations at
imaginary µ , for full QCD [10].

We suggest that the softening of the transition as µI is increased is because the introduction
of an isospin chemical potential reduces the symmetry (at least for even numbers of flavours).
Reducing symmetry tends to soften transitions. For example, reducing the number of flavours from
3 to 2, reduces the symmetry at m = 0, µ = 0 from SU(3)× SU(3) to SU(2)× SU(2) and the
transition softens from first order to second. The addition of a mass breaks chiral symmetry to a
pure vector symmetry, and softens phase transitions to crossovers.

Determination of the true scaling field for the magnetic order parameter – a linear combination
of the chiral condensate, the plaquette action and the isospin density – is needed to remove the
finite size effects. Use of the methods of de Forcrand and Philipsen to improve the signal/noise in
calculating the µ2 dependence of the Binder cumulants, would also help [11, 12].

Fodor and Katz have predicted a critical endpoint at TE = 162(2) MeV and µ = 120(13) MeV,
using their reweighting methods [13]. However, this µ is considerably beyond mπ/2 and thus
beyond the reach of both phase-quenched and analytic-continuation methods.

We are performing simulations along lines of constant β to determine the equation-of-state for
phase-quenched QCD to compare with that for full QCD [6, 7, 14]. At low β s we are restricted to
µI < mπ . At high β s, where the system is in the plasma phase for all µIs, we can cover the whole
range of µI . What can we learn from the resonance gas model [15] and chiral perturbation theory
about this equation-of-state?
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