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1. Introduction

At large baryon chemical potential µB the properties of QCD are expected to change as the
system moves from a confined nuclear matter phase to a deconfined quark matter phase where
the relevant degrees of freedom are quarks and gluons. Weak-coupling techniques can be used at
asymptotic densities and have revealed a superconducting colour-flavour locked phase. However as
density is reduced towards phenomeologically reasonable values, the precise nature of the ground
state appears very sensitive to both the input parmeters and the nature of the non-perturbative
assumptions. It seems natural to use Lattice QCD to investigate these issues, but unfortunately
whilst the lattice has been used very successfully to investigate QCD with large T , the well known
“Sign Problem” has made progress for µB/T � 1 impossible.

Orthodox simulation techniques can be applied, however, to the case of two colour QCD
(QC2D) with gauge group SU(2). Whilst this theory differs in important ways from QCD, for
instance in having bosonic baryons in the spectrum, and in having a superfluid, rather than super-
conducting, ground state at large µB, it remains the simplest gauge theory in which a systematic
non-perturbative treatment of a baryonic medium is possible. Recent simulations [1] have provided
evidence for two distinct forms of two color matter; the superfluid dilute Bose gas formed from di-
quark bound states which form at onset (ie. for µB > µBo = Mπ ), and a deconfined “quark matter”
phase at larger densities resulting from BCS condensation at the Fermi surface. It is possible that
studies in this regime may have qualitative or even quantitative relevance for QCD quark matter;
for instance Schäfer [2] has highlighted how the impact of instantons on the excitation spectrum at
high baryon density could be elucidated by lattice simulations.

In this preceeding we study the µB-dependence of the hadron spectrum in both meson and
baryon sectors of QC2D with N f = 2 flavours of Wilson quark. We also study the nature of the
Goldstone mode associated with superfluidity, as done for QC2D with staggered lattice fermions in
[4], and expose the specifically two colour phenomenon of “meson-baryon” mixing in the super-
fluid state.

2. Formulation

The gauge-invariant lattice action with N f = 2 degenerate fermion flavours is [1]

S = ψ̄1M(µ)ψ1 + ψ̄2M(µ)ψ2 −κ j(ψ̄1Kψ̄T
2 −ψT

2 Kψ1), (2.1)

with M the conventional Wilson fermion matrix (with lattice spacing a = 1)

Mxy(µ) = δxy −κ ∑
ν

[

(1− γν)eµδν0Uν(x)δy,x+ν̂ +(1+ γν)e−µδν0U†
ν (y)δy,x−ν̂

]

, (2.2)

κ the hopping parameter, µ the quark chemical potential, and j the strength of an SU(2)L⊗SU(2)R-
invariant diquark source term needed to regularise IR fluctuations in the superfluid phase, which
should be extrapolated to zero to reach the physical limit. The subscript on the fermion fields is
a flavour index, the anti-unitary operator K = KT ≡Cγ5τ2, where CγµC−1 = −γT

µ = −γ∗µ and the
Pauli matrix τ2 acts on colour indices. The hadronic states examined are qq̄ mesons and qq, q̄q̄
diquark baryons and anti-baryons. In all cases we use local interpolating operators of the form
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ψ̄(x)Γψ(x), ψT (x)KΓψ(x), ψ̄(x)KΓ̄ψ̄T (x). The matrix Γ = γ0Γ̄†γ0 determines the spacetime
quantum numbers of the hadron, with inclusion of the K factor ensuring that mesons and baryons
with the same Γ have the same JP. In this study we will focus on states with Γ ∈ {11,γ5,γ j, iγ5γ j}
with j = 1, . . . ,3 corresponding to JP ∈ {0+,0−,1−,1+}.

3. Numerical Method

We studied an ensemble of gauge configurations generated on a 83 × 16 lattice at various
values of µ using a Hybrid Monte Carlo algorithm with the fermion action (2.1) supplemented
by a standard Wilson gauge action [1]. The parameters were β = 1.7, κ = 0.178; studies of the
string tension suggest a “physical” lattice spacing a = 0.26(1)fm,1 and studies of the µ = 0 meson
spectrum yield Mπa = 0.79(1) and Mπ/Mρ = 0.80(1) [6]. For the most part the diquark source
ja = 0.04, though for a few values of µ the series ja = 0.06,0.04,0.02 was studied in order to
permit a j → 0 extrapolation.

Quark propagators on each configuration were calculated by all-to-all techniques [7] using
time, spin and flavour dilution. Whilst this equates to constructing 16×4×2 = 128 dilution vectors
per propagator and thus performing 256 inversions per configuration, at µ 6= 0 this was required
for acceptable statistical precision. Disconnected diagrams relevant for each state were calculated
and saved seperately; with the current level of statistics these contributions are both noisy and
compatible with zero.

To extract masses the meson correlation functions were fitted to a cosh function. The time
range was adjusted to achieve a stable fit while minimising the obtained χ 2/d.o. f . The µ 6= 0 states
with baryon number B 6= 0, such as the diquarks and the kaons, are no longer degenerate with their
anti-particles. This results in correlators which are no longer time-symmetric and must be fitted by
a sum of two independent exponentials. Such a 4-parameter fit is clearly more susceptible to noise
than the standard cosh form. Naïvely in the vacuum phase below onset, the states’ masses receive
an additive contribution ±µBNc. Hence as µ increases the correlation function is increasingly
dominated by the lighter of the particle-antiparticle pair and the heavier state rapidly becomes very
difficult to fit.

4. Results

All results presented here come from analysis of hadron correlators formed from connected
quark propagators. The result for the pion mass at µ = 0 is Mπ a = 0.800(3). The prediction of
chiral perturbation theory (χPT) [8], applicable strictly when there is a separation of scales between
the pion and heavier hadrons, is that µo = Mπ/2. This suggests that given the measured pion mass
of Mπ(µ = 0)a = 0.800(3), the onset of the superfluid phase should take place at µoa ' 0.4.

In principle all our results should be extrapolated to the “physical” limit j → 0, but unfortu-
nately available resources preclude a systematic study for all µ . Here we follow [1] by studying
ja = 0.02, . . . ,0.06 at three representative µ points: just below onset, just above onset, and well
into the superfluid phase. The results for Mπ and Mρ are shown in the open symbols in Fig. 1.

Results for the meson spectrum as a function of µ are displayed in Fig. 1. At µ = 0 the
1This value is based on string tension measurements on a 123 ×24 lattice and supplants those reported in [1, 6].
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Figure 1: Graph showing meson masses as a function of µ for ja = 0.04. The dashed line is the χPT prediction for the
pion. Open symbols denote extrapolations to j → 0.

isovector 0− and 1− states, ie. the pion and rho, are consistent with the values found in [1, 6].
Throughout the vacuum phase (i.e. µ < µo) Mπ and Mρ are more or less constant as expected for
states with B = 0, although they do show some increase for µa > 0.2. For the pion this appears
to be a j 6= 0 artifact vanishing in the j → 0 limit, but things are not so clear for the noisier rho.
At and beyond onset at µoa ' 0.4 the pion and rho signals become much noiser as reflected in the
error bars, but it is still possible to identify trends. The pion starts to become heavier at onset and
appears to increase in mass monotonically with µ in the limit j → 0. The j = 0 χPT prediction
Mπ = Mπ(µ = 0)θ(µ0 − µ) + 2µθ(µ − µo) [8] (dotted line) is followed in a qualitative sense.
The increase of the pion mass post-onset is characteristic of a state formed from q and q̄ with a
symmetric combination of quantum numbers under the residual global symmetries (i.e. the PS state
in the notation of [8]) in a theory with Dyson index βD = 1.

Post-onset the rho becomes significantly lighter, in agreement with the result found in simula-
tions on 43 ×8 with significantly heavier quarks by the Hiroshima group [3]. This effect becomes
stronger as j → 0. Reduction of Mρ in a nuclear medium has been proposed to explain the low
mass lepton pair enhancement observed in heavy ion collisions [9].

Results for isovector 0+ and isoscalar 1+ states are omitted from Fig. 1 for the sake of clarity.
The former shows no signifcant signal and the latter follows the rho almost exactly until µa > 0.5
at which point it becomes too noisy to measure. We do, however, include the similar results for the
isoscalar 0−. By ignoring the disconnecting pieces the only difference between these two states
and the pion and rho is the sign of the term proportional to 〈q(x)qT (y)〉 i.e. the anomalous term.
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Figure 2: Higgs and Goldstone masses as a function of µ . The three insets show results as j is varied at fixed µa =

0.3,0.5,0.7. Extrapolations to j = 0 are displayed on the main graph with triangular symbols.

That they are degenerate shows that this is negligible pre-onset. Beyond onset, there is a small
window in which the 0− in the isoscalar channel is significantly lighter than the isovector, and is
indeed roughly degenerate with the I = 0 0− diquark of Fig. 3, to be discussed below.

The two remaining mesons shown in Fig. 1, the isovector 1+ and isoscalar 0+, show a similar
behaviour, both starting off relatively heavy (and noisy) and then rapidly dropping as µ increases.
By µa = 0.3 they have reached a minimum and stay more or less constant as µ increases further.
We shall argue below that the low mass of the 0+ state is due to its overlap with the Goldstone
boson in the superfluid phase, when baryon number ceases to be a good quantum number; the low
mass of the 1+ is more unexpected.

To understand the physics of the diquark sector, it is helpful to begin with the Higgs and
Goldstone states with a varying diquark source strength j. Fig. 2 shows Higgs and Goldstone
masses as functions of µ at ja = 0.04. The insets show how the two states scale with j at three
selected values of µ . Below onset Higgs and Goldstone are degenerate, both scaling approximately
linearly with j 2. Post onset the degeneracy is broken, and the relation MGoldstone ∝

√
j predicted

in χPT [8] appears to hold.
The two states remain degenerate until onset at which point the Goldstone becomes lighter than

the Higgs, and appears to become massless as j → 0. This is a clear manifestation of spontaneous
breaking of U(1)B symmetry breaking for µ > µo, implying a superfluid ground state in which

2The pre-onset behaviour M( j) = M(0)(1 + b j2)
1
4 predicted by χPT [8] may be difficult to distingush from linear

behaviour in this regime.
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Figure 3: Graph showing diquark masses as a function of µ . Only states corresponding to operators with B < 0 are
displayed for µa > 0.25. The dot-dashed lines have intercepts at Mπ ,ρ , and gradients ±2.

baryon number is no longer a good quantum number, and therefore meson and diquark states are
in principle indistinguishable.

The diquark spectrum in the remaining spin-0 and spin-1 channels is shown in Fig. 3. It is
striking that the signal-noise ratio is much higher for some diquarks than for the mesons, also seen
in simulations with staggered fermions [4]. The two cleanest signals are for the isoscalar 0+ and
the isovector 1+. The first observation is that there is a relation between the meson and diquark
spectra which holds for µ = j = 0 if disconnected diagrams are neglected:

MD(JP) = MM(J−P). (4.1)

For 0 < µ < µo, during which the physical ground state remains the vacuum, we thus predict
MD(0+) = Mπ ±2µ , MD(1+) = Mρ ±2µ , shown as dot-dashed lines in Fig. 3. Indeed both diquark
particle-antiparticle pairs behave as expected up to µa≈ 0.3. Diquark masses are not shown beyond
µa = 0.25 as they become unfittable, as explained in Sec. 3. After this both 0+ and 1+ anti-diquark
states flatten off and slowly decrease with µ . The other two isoscalar diquarks constructed from
local operators, namely the 0− and 1−, are extremely heavy and hard to fit below onset, but above
onset have a sufficiently good signal for us to deduce masses comparable with Mπ(µ = 0),Mρ(µ =

0). Although the noise in the meson sector is admittedly large, the approximate degeneracy between
meson and baryon sectors in the 0+ and 1+ channels seen in Figs. 1 and 3 is consistent with the
meson-baryon degeneracy in the superfluid state discussed above. Meson-diquark degeneracy has
also been observed in quenched studies at µ 6= 0 with staggered fermions [10].

The isoscalar 0− diquark is a particularly interesting state in QC2D because of meson-baryon
mixing in the superfluid phase. It has the same quantum numbers as the η ′ meson [2], and hence
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its mass acts as a probe of instanton effects and/or possible restoration of U(1)A symmetry in a
baryonic medium. Unfortunately the current simulations are not close enough to the chiral limit to
settle this issue via observation of a π-η ′ mass splitting.

5. Discussion

The main achievements of this study have been observations of:

• The reversal of the pion and rho levels on crossing from vacuum into a baryonic medium. In
the vacuum µ < µo, Mπ,ρ is approximately constant, probably because there is no diquark
state with the same quantum numbers with which to mix.

• The breaking of the degeneracy between Higgs and Goldstone diquark states for µ > µo,
and the Goldstone mass scaling as

√
j in accordance with general theoretical properties of

spontaneous symmetry breaking by condensation of fermion pairs.

• Further evidence for meson-baryon mixing in the degeneracy of I = 0 0+ and I = 1 1+ states
for µ > µo. Post onset the 1+ appears to be the next lightest state after the Goldstone and
Higgs. The fact that the mesons with these quantum numbers appear not to have constant
mass even pre-onset (see Fig. 1) can also be ascribed to meson-baryon mixing, since for
j 6= 0 there is a non-zero amplitude for ψ̄ψ to project onto a baryon.

Lttle has been uncovered about the effects of a second deconfining phase transition suspected
to occur at µda ≈ 0.65 on this system [1]. The only possible discernable trend is a levelling off
of the already massive pion state for µa >∼ 0.5 seen in Fig. 1. However the increasing statistical
noise makes this observation provisional at best. In a deconfined phase we might expect mesons
and baryons to be formed from particle-hole and particle-particle pairs in the neighbourhood of a
Fermi surface, and it is possible that the local operators used in this study have a poor projection
onto the true quasiparticle excitations. We hope that studies of meson and diquark wavefunctions
currently in progress will clarify the situation.
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