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Thanks to dimensional reduction, the contributions to the hot QCD pressure coming from so-

called soft modes can be studied via an effective three-dimensional theory named Electrostatic

QCD (spatial Yang-Mills fields plus an adjoint Higgs scalar). The poor convergence of the per-

turbative series within EQCD suggests to perform lattice measurements of some of the associated

gluon condensates. These turn out, however, to be plagued bylarge discretization artifacts. We

discuss how Numerical Stochastic Perturbation Theory can be exploited to determine the full lat-

tice spacing dependence of one of these condensates up to 4-loop order, and sharpen our tools on

a concrete 2-loop example.
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1. Motivation

The pressurep(T) of hot QCD (with a temperatureT ≫ 150 MeV) is of crucial importance in
different contexts. For instance, incosmology, the cooling rate of the Universe is given by

1
T

dT
dt

= −
√

24π
mPl

√

e(T)s(T)

c(T)
, (1.1)

whereT is the temperature,t the age of the Universe,mPl the Planck mass, and

s(T) = p′(T) , e(T) = Ts(T)− p(T) , c = e′(T) . (1.2)

On the other hand, inheavy ion collisions, the system evolves according to

Tµν ≈ [p(T)+e(T)]uµuν − p(T)η µν , ∂µTµν = 0 , (1.3)

whereTµν is the energy-momentum tensor,η µν the Minkowski metric, anduµ the flow velocity.
Finally, from a theoretical point of view, the pressure is proportional to the number of effective
degrees of freedom, and is therefore a good observable to characterize hot QCD matter.

2. Theoretical setup — part I (continuum)

In general, the determination of the QCD pressure is a non-trivial task. In spite of our re-
striction to the deconfined phase,T ≫ 150 MeV, where perturbation theory should in principle be
applicable, it is of limited use in practice, because of the very slow convergence of the perturba-
tive series [1]. At the same time, first principles lattice simulations are also difficult at temperatures
above aboutT ∼ 1 GeV [2], because the system then develops a scale hierarchy, g2T/π <∼gT<∼πT,
whereg is the QCD gauge coupling (for an idea to possibly overcome this limitation, see ref. [3]).

A suitable strategy to tackle the computation ofp(T) (and of many other observables) in this
situation is given byDimensional Reduction[4, 5, 6]: it consists of integrating out “hard modes”,
with momentak∼ πT, from the four-dimensional (4d) QCD, to arrive at an effective description in
terms of so-calledElectrostatic QCD (EQCD)[7], i.e. a three-dimensional (3d) Yang-Mills theory
plus an adjoint Higgs fieldAa

0(x). The action of EQCD is given by

SEQCD =

∫

d3x

{

1
2

Tr[F2
i j (x)]+Tr[Di ,A0(x)]

2 +m2
E Tr[A2

0(x)]+λE

(

Tr[A2
0(x)]

)2
}

, (2.1)

where F a
i j is the 3d field strength tensor;Di the covariant derivative;A0 = ∑8

B=1AB
0 TB with

Tr [TATB] = 1
2δ

AB; and we implicitly assume the use of dimensional regularization. The tempera-
tureT now enters only via the parametersmE, λE andgE, wheregE is the EQCD gauge coupling.

It turns out that perturbation theory within EQCD might converge very slowly [7] (see, how-
ever, ref. [8]). One can then switch to a numerical measurement of the partial derivatives of the
pressure with respect to the parameters of the EQCD action, the so-calledcondensates: after sub-
tracting the proper counterterms, the results are extrapolated to the continuum and then numerically
integrated to finally getp(T) [9]. It turns out that carrying out the continuum extrapolation is dif-
ficult because of largeO(a) discretization effects: thanks to super-renormalizability, these effects
are however purely perturbative in nature, and our aim is to determine them up to 4-loop level.
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3. Theoretical setup — part II (lattice)

The EQCD action on the lattice may be written as

Slatt = β ∑
x, i < j

(

1− 1
3

ReTr
[

Pi j (x)
]

)

−

− 2 ∑
x, i < j

Tr
[

φ(x)Ui(x)φ(x+ i)U†
i (x)

]

+

+ ∑
x

{

α(β ,λ ,amE)Tr
[

φ2(x)
]

+ λ
(

Tr
[

φ2(x)
]

)2
}

, (3.1)

whereβ = 6/ag2
E, Pi j is the plaquette,Ui is the link variable,φ =

√
aA0, λ = aλE, and [10]

α(β ,λ ,amE) = 6

{

1+
(amE)

2

6
−

(

6+
5
3

λβ
)

3.175911525625
4πβ

−

− 3
8π2β 2

[(

10λβ − 5
9

λ 2β 2
)(

lnβ +0.08849

)

+
34.768

6
λβ +36.130

]}

.

(3.2)

The quantity under inspection is the derivative ofp(T) with respect to(amE)
2; this yields〈Tr [φ2]〉,

which can be expanded as

〈Tr [φ2] 〉 = d00+d10
1
β

+d11λ +d20
1

β 2 +d21
λ
β

+d22λ 2 +

+ d30
1

β 3 +d31
λ
β 2 +d32

λ 2

β
+d33λ 3 +O

(

λ n

β 4−n

)

. (3.3)

The coefficientsd00, d10, d11, d21 andd22 are known analytically, for instance (N ≡ lattice extent)

d11 = 40

[

3.175911525625
4π

− 1
N3

N−1

∑
n1=0

N−1

∑
n2=0

N−1

∑
n3=0

1

4∑3
i=1 sin2(πni

N )+ (amE)2

]

×

× 1
N3

N−1

∑
k1=0

N−1

∑
k2=0

N−1

∑
k3=0

[

1

4∑3
i=1 sin2(πki

N )+ (amE)2

]2

, (3.4)

but the others have to be determined: those with the biggest impact are expected to be the 3-loop
and 4-loop coefficients independent ofλ , i.e.d20 andd30, respectively.

4. Numerical setup

The perturbative study is concretely carried out by means ofNumerical Stochastic Perturba-
tion Theory (NSPT)[11]. (Incidentally, it would also be interesting to pursuethe same computation
with standard techniques [12].) Its origins lie in Stochastic Quantization [13], based on introducing
an extra coordinatet and an evolution equation of the Langevin type, namely

∂tφ(x, t) = −∂φS[φ ]+η(x, t) , (4.1)
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Figure 1: Analytical and numerical results for the coefficient d11 vs. N at amE = 0.4. The results agree with
each other within statistical errors.

whereη(x, t) is a Gaussian noise. The usual Feynman-Gibbs path integral is recovered by averag-
ing over the stochastic time,

Z−1
∫

[Dφ ]O[φ(x)]e−S[φ(x)] = lim
t→∞

1
t

∫ t

0
dt ′

〈

O[φη(x, t ′)]
〉

η . (4.2)

NSPT can now be introduced by expanding the variables as

φ(x, t) −→ ∑
k

gk
0φ (k)(x, t) , (4.3)

whereg0 is some small coupling. This results in a hierarchical system of differential equations that
can be numerically integrated by discretizing the stochastic time, ast = nτ , whereτ is a time step.

A similar construction holds also for the gauge degrees of freedomUi(x), for which the
Langevin equation reads

∂tUη = −i
(

∇S[Uη ]+η
)

Uη , (4.4)

in order to assure a correct evolution within the group. The perturbative expansion is then a double
expansion inβ andλ , to obtain the previously-written series of〈Tr [φ2] 〉.

In practice, every variable evolves according to its Langevin dynamics for different values of
τ ; a measurement of Tr[φ2] is performed at every time step (once thermalization has been reached);
and finally one extrapolates toτ = 0 (this last step is necessary since the correct probabilistic weight
at equilibrium is recovered only in the limitτ → 0). This procedure is then repeated after changing
the parameters of the action.

5. Preliminary results

Our approach involves three different extrapolations / interpolations in total: first, the above-
mentioned extrapolation toτ → 0; second, an extrapolation to infinite volume (N → ∞); third, an
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Figure 2: Results for the coefficient d11 vs.1/N at amE = 0.3 and1.0. Note the very different resolutions of
the vertical axes.

interpolation between the differentamE simulated, in order to obtain the desired 4-loop predictions
at any finiteamE.

As a check of the first of these extrapolations, we compare thenumerical outputs ford11 with
its known values (eq. (3.4)) at fixedamE and lattice extentN: this is done inFig. 1.

The next task is to extrapolate to infinite volume. As Fig. 1 shows, finite-volume effects
become exponentially small at large volumes. However, the volume required for this grows as the
massamE decreases. This is illustrated inFig. 2 for two masses, one larger than in Fig. 1, and
one smaller. For the large mass, a plateau can be reached allowing for a reliable infinite-volume
extrapolation, while for the smaller mass, the largest volumes we can afford are not yet large enough
to reach a plateau.

In order to deal with this situation, we adopt the following approach. Let us consider a mass
like amE = 0.8: numerical evidence shows that this one has a reasonable plateau at affordable
N for all the coefficientsdi j , but still the behaviour of the data is not too flat (i.e., somevolume
dependence is detectable). One can then extract an infinite-volume valuedi j (∞) by fitting a constant
to data in the range of the plateau, and subtract it from the data in order to obtain the quantities
(L ≡ Na)

gi j (mEL) ≡ di j (mEL)−di j (∞) . (5.1)

Subsequently, one can try to obtain a reasonable interpolating fit fi j (mEL) for gi j (mEL), allowing
to go also to other values ofmEL than those simulated atamE = 0.8. After this, one can go back to
the other massesm′

E, and take a finite-size scaling ansatz of the form

di j (m
′
EL) = di j (∞)+Ai j (am′

E)× fi j (m
′
EL) , (5.2)

wheredi j (m′
EL) are the direct measurements at the massm′

E, anddi j (∞) andAi j (am′
E) are volume-

independent fit coefficients. Test results ford11(∞) obtained this way are shown inFig. 3.
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Figure 3: Comparison between exact values (dashed curve) and numerical infinite-volume extrapolations
(open symbols) as a function of amE. The continuum value at amE = 0 has been extracted from ref. [14]. The
dotted line shows a fit through the open symbols, constrainedto go through the continuum point (which is
known for all di j ). The agreement between the exact and fitted curves is satisfactory.

6. Conclusions

Preliminary studies of the 2-loop coefficientd11, where analytical values are also available,
show that our general approach works. The next goal is to finalise the analysis for the most impor-
tant 3-loop coefficientd20 and 4-loop coefficientd30 [15]. The quality of our data is good, so we
expect to be able to extract these with small errors in the same mass range as in Fig. 3. This should
allow to re-analyse the Monte Carlo data of ref. [6] with significantly reduced systematic errors
from the continuum extrapolation. Combining with refs. [16, 17, 18], all “soft” contributions to the
hot QCD pressure would then be under reasonable control. At the same time, the determination of
the 4-loop “hard” contributions remains an open challenge;toy model computations in scalar field
theory have suggested, however, that itcanbe tackled with some effort [19].
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