
P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
7
)
2
3
9

Progress on Perturbative Matching Calculations for
the Charm Quark Mass using the HISQ Action

Emel Dalgic∗ ab, Kit Wongc, Christine Daviesc, Eduardo Follanad,Alistair Harte,Ron
Horgan f , Peter Lepageg, Quentin Mason f , Junko Shigemitsud, Howard Trottiera and
Jackson Wub

aSimon Fraser University, Burnaby BC, Canada V5A 1S6
bTRIUMF, Vancouver BC, Canada V6T 2A3
cUniversity of Glasgow, Glasgow, UK G12 8QQ
dThe Ohio State University, Columbus OH, USA 43210
eUniversity of Edinburgh, Edinburgh, UK EH9 3JZ
f University of Cambridge, Cambridge, UK CB3 0HE
gCornell University, Ithaca NY, USA 14853
E-mail: emel@triumf.ca, k.wong@physics.gla.ac.uk,
c.davies@physics.gla.ac.uk, e.follana@physics.gla.ac.uk,
a.hart@ed.ac.uk, R.R.Horgan@damtp.cam.ac.uk ,
gpl@mail.lns.cornell.edu, quentin-mason@cornell.edu,
shige@pacific.mps.ohio-state.edu, trottier@sfu.ca, jwu@triumf.ca

The highly-improved staggered quark (HISQ) action is the most accurate discretization scheme to

date for the charm quark. Here we report on the progress of perturbative matching for the quark

mass using the HISQ action. The matching is done throughO(α2
s ) using a combination of Monte

Carlo simulations at weak coupling and diagrammatic perturbation theory. When combined with

on-going simulation efforts using the HISQ action, a determination of the charm quark mass to a

few percent accuracy can be achieved. Of particular interest will be a comparison with the recent

sum rule determination of the charm mass due to Kühn et al. [1].
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1. Introduction

Quark masses are fundamental parameters that go in the standard model and it is important to
determine them precisely to constrain models beyond the standard model and to use them as inputs
for phenomenological calculations. As we do not find free quarks in nature, their masses cannot
be directly measured. One needs to instead do a comparison between lattice and experiment to
extract quark masses. Quarks interact via the strong force,therefore such a calculation would be
nonperturbative. Lattice QCD methods are well suited for this problem. This work builds on recent
developments in staggered quarks [2].

Previously, the light quark massesmMS
u,d andmMS

s have been determined by several collabo-

rations. We list somemMS
s determinations. The HPQCD collaboration used the AsqTad action

with 3 dynamical quarks to determinemMS
s = 87±4±4 MeV [3]. The CP-PACS and JLQCD col-

laborations used the Wilson action with 3 dynamical quarks to calculatemMS
s = 91.114.6

6.2 MeV [4].
The QCDSF-UKQCD collaborations used clover fermions with 2flavors of sea quarks to get
mMS

s = 110−130 MeV [5]. The ALPHA collaboration used Wilson quarks with2 dynamical
quarks and obtainedmMS

s = 97(22) MeV [6]. TheSPQcdR collaboration used Wilson Quarks with
2 dynamical flavors to getmMS

s = 101(8)(25
0 ) MeV [7]. The Particle Data Group reports the value

mMS
s = 95±25 MeV [8].

Our goal is to also determinemc with the HISQ (Highly Improved Staggered) quark action to
a few percent accuracy, which will be determined by taste-changing effects and discretization. The
taste changing effects for the HISQ action are up to 3-4 timessmaller than for the Asqtad action
as detailed in [2], and a comparison of the two actions is shown in Fig. 1. It will be interesting to
compare our results formc with the sum rules calculation by Kühn et al. [1], where an error of 1%
is quoted.

Our aim is to do a perturbative matching calculation and obtain the renormalization factors for
mc in theMS scheme. Below we list the perturbative expansions of the pole mass in terms of the
bare mass, its relation to theMS mass, and the relevant mass renormalization factors:

mPole = m0[1+ αlat(A11log(m0a)+ A10),

+ α2
lat log2(m0a)+ A21log(m0a)+ A20+ ...],

mMS(µ) = mPole(1+ Z1(
µ

mPole )
αMS

π
+ Z2(

µ
mPole )

α2
MS

π2 ),

mMS(µ) =
am0

a
Zm(µa,m0a),

Zm(µa,m0a) = 1+ Zm,1(µa)αV (q∗)+ Zm,2(µa)α2
V + ...

Note that the correct expansion parameter to use is the renormalized couplingαV , the perturbative
series inαlat is not well behaved.

2. Diagrammatic Method

One way to do the matching is to use perturbation theory and compute all the diagrams up to
the order at which we work. Since matching corrects for the short distance effects brought about by
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Figure 1: Comparison of results for the HISQ vs Asqtad actions [9]. TheHISQ results correspond (from
left to right) to 0-link, 1-link, 2-link and 3-link mesons. For Asqtadηc we show results for the 0- and 1-link
pseudoscalars.

the finite lattice spacing, asymptotic freedom allows us to use perturbation theory. This approach
is very involved, as it requires calculating many diagrams,and the Feynman rules for the HISQ
action are extremely complicated. The relevant diagrams are shown in Fig. 2 .

3. Another Method: Weak Coupling Monte Carlo

An alternative to diagrammatic perturbation theory is to use Monte Carlo simulations at weak
couplings, where the theory enters the perturbative phase.Simulations involving a particular op-
erator, in this calculation the pole mass, are done at several values of the strong coupling, and
the resulting data are then fitted to an expansion inαV to yield the perturbative coefficients. The
expectation value of an observable can be calculated on the lattice using

< M > =
∫

[DU ][dψDψ]M(U,ψ)e−βS[U,ψ ],

D3 D4 D5 D6

D7-11 D12 D13

D14-18 D19 D20

D21 D22 D24

D25 D26 D27 D28

CT1 CT2 CT3 CT4 CT5 CT6

Figure 2: Relevant diagrams for the diagrammatic method.
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Figure 3: The renormalized massM measured at different couplings and lattice volumes for theASQTAD
action. The data points are fitted to an expansion inαV (q∗) (solid lines). The “slopes” and “curvatures” are
the first and second order coefficients respectively.

whereβ = 10/g2. It is worth reiterating that in practice it is crucial to usethe renormalized coupling
instead of the bare lattice couplingαlat ≡ g2/4π, for which perturbation theory is very poorly
convergent. A good choice isαV (q∗) defined by the static potential, along with an estimate of the
optimal scaleq∗ for the quantity of interest. The coupling is then convertedback toαlat using the
known third order relation betweenαV andαlat [10].

As an example, Fig. 3 shows the renormalized massM measured at different couplings and
lattice volumes for the ASQTAD action in the quenched approximation. The data points are fitted
to an expansion of the form

M = mtree + c1αV + cV
2 α2

V + . . . ,

wheremtree is the tree-level mass. The “slope” of the curve gives the first order coefficientc1

(independent of the scheme) and the “curvature” is equal tocV
2 . One can use thec1 value calculated

from one loop perturbation theory to determinec2 more accurately. Fig. 4a shows the infinite
volume extrapolation ofc1. For comparison, results from diagrammatic perturbation theory [11],
both at finite volume and in the infinite volume limit, are alsoplotted. Numerical values ofc2 can
be calculated from Fig. 3 also by calculating the curvatures. To improve the accuracy, however, we
re-fit the data withc1 fixed to the analytic values at finite volume. Our results are shown in Fig. 4b.
The overall agreement with our diagrammatic perturbation theory calculations is remarkable.

Fig. 5 shows the first order coefficients for the HISQ action, extrapolated to the infinite vol-
ume limit. For comparison, we also plot the same coefficientsobtained using the diagrammatical
method, and observe that the agreement is again outstanding. The 1-loop perturbative calculations
at finite volume, which could be used to extract the second order coefficients from the data, are in
progress.

Table 1 shows the perturbative coefficientA20 calculated with the AsqTad action, neglecting
sea quarks, compared to diagrammatic perturbation theory results. We find good agreement be-
tween the two sets of results.

We have demonstrated that perturbative coefficients for mass renormalization can be obtained
with high accuracy from Monte Carlo simulations at weak couplings. This numerical method
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Figure 4: a) Infinite volume extrapolation of the first order coefficients. The error bars are invisible at this
scale for the analytic results. b) Infinite volume extrapolation of the second order coefficients. Results are
obtained by fixingc1 to the analytic values at finite volume.
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Figure 5: Infinite volume extrapolation of the first order coefficientsfor the HISQ action. The error bars are
invisible at this scale for the analytic results.

am Diagrammatic PT Weak Coupling MC

0.3 5.78(5) 5.26(33)
0.4 5.61(7) 5.30(28)
0.5 5.47(6) 5.25(24)
0.6 5.23(6) 5.18(22)
0.7 5.15(6) 5.05(21)

Table 1: Asqtad quenchedA20, comparison between diagrammatic perturbation theory andhigh-beta Monte
Carlo simulations.
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Figure 6: There are only 4 diagrams to compute in the fermionic part.

Figure 7: Fattening the link. This needs to be done twice, once with thethin link, and once more with the
already fattened link.

provides a valuable alternative to diagrammatic perturbation theory.

4. Strategy

Our short term goal is to obtain the gluonic part of our calculation by the weak coupling Monte
Carlo method, and get the fermionic part using diagrammatical perturbation theory. The diagrams
needed are shown in Fig. 6.

In the long term, it would be desirable to do the entire calculation diagrammatically and also
to compute the gluonic part using the Monte Carlo weak coupling approach in order to compare
the two methods.

5. Handling HISQ Perturbation Theory

The HISQ action is obtained by fattening a simple link variable, reunitarizing the result, and
fattening the resulting link again. Fattening is necessaryfor suppressing taste changing interactions,
and fattening twice suppresses taste changing further. Reunitarization is necessary to suppress the
unphysical tadpole diagrams which only exist in the latticediscretization and not the continuum
limit. Fattening of a link can be visualised as in Fig. 7. Pieces of the action (in this case the links
shown above) can be combined by doing Fourier convolutions,which means one assigns the gluons
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Figure 8: Convolution of two operators for two gluons.

to the pieces in all possible ways. Fig. 8 is a simple illustration with two operators and two gluons.
Once we perform the convolutions and reunitarize, we obtainan improved link variable. We need

to fatten this yet again. We therefore repeat the same process of convoluting, this time with the
already fattened and reunitarized link, to obtain the full HISQ vertices.

6. Conclusions

Our project involves performing perturbative matching calculations to findmc throughO(α2
s )

using the HISQ quark action. To achieve this, work is underway to do the fermionic part of the
calculation diagrammatically, while the gluonic part is computed using the weak coupling Monte
Carlo method. When both calculations are complete, the results will be combined to obtain per-
turbative coefficients for themC mass renormalization. Our initial tests show that perturbative
coefficients can be obtained accurately using the weak coupling Monte Carlo method. For the
longer term goal of doing the entire calculation diagrammatically, the vertex functions necessary
to achieve this aim have been prepared.
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